Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 521-522: 336-45, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25855094

RESUMO

Studies of C cycle alterations are extremely important to identify changes due to climate change, especially in the polar ecosystem. The objectives of this study were to (i) examine patterns of soil CO2-C and N2O-N emissions, and (ii) evaluate the quantity and quality of soil organic matter across a glacier retreat chronosequence in the Maritime Antarctica. Field measurements were carried out during January and February 2010 (summer season) along a retreating zone of the White Eagle Glacier, at King George Island, Maritime Antarctica. Soil samples (0-10cm) were collected along a 500-m transect at regular intervals to determine changes in soil organic matter. Field CO2-C emission measurements and soil temperature were carried out at regular intervals. In addition, greenhouse gas production potentials were assessed through 100days laboratory incubations. Soils exposed for a longer time tended to have greater concentrations of soluble salts and possess sandier textures. Total organic C (3.59gkg(-1)), total N (2.31gkg(-1)) and labile C (1.83gkg(-1)) tended to be lower near the glacier front compared with sites away from it, which is correlated with decreasing degree of humification of the soil organic matter with exposure time. Soil CO2-C emissions tended to increase with distance from the glacier front. On average, the presence of vegetation increased CO2-C emissions by 440%, or the equivalent of 0.633g of CO2-C m(-2)h(-1). Results suggest that newly exposed landsurfaces undergo soil formation with increasing labile C input from vegetation, accompanied by increasing soil CO2-C emissions. Despite the importance of exposure time on CO2-C production and emissions, there was no similar trend in soil N2O-N production potentials as a function of glacial retreat. For N2O, instead, the maximum production occurred in sites with the first stages of vegetation growth.

2.
Braz J Biol ; 72(3 Suppl): 775-85, 2012 08.
Artigo em Inglês | MEDLINE | ID: mdl-23011303

RESUMO

Agricultural areas deal with enormous CO2 intake fluxes offering an opportunity for greenhouse effect mitigation. In this work we studied the potential of soil carbon sequestration due to the management conversion in major agricultural activities in Brazil. Data from several studies indicate that in soybean/maize, and related rotation systems, a significant soil carbon sequestration was observed over the year of conversion from conventional to no-till practices, with a mean rate of 0.41 Mg C ha(-1) year(-1). The same effect was observed in sugarcane fields, but with a much higher accumulation of carbon in soil stocks, when sugarcane fields are converted from burned to mechanised based harvest, where large amounts of sugarcane residues remain on the soil surface (1.8 Mg C ha(-1) year(-1)). The higher sequestration potential of sugarcane crops, when compared to the others, has a direct relation to the primary production of this crop. Nevertheless, much of this mitigation potential of soil carbon accumulation in sugarcane fields is lost once areas are reformed, or intensive tillage is applied. Pasture lands have shown soil carbon depletion once natural areas are converted to livestock use, while integration of those areas with agriculture use has shown an improvement in soil carbon stocks. Those works have shown that the main crop systems of Brazil have a huge mitigation potential, especially in soil carbon form, being an opportunity for future mitigation strategies.


Assuntos
Agricultura/métodos , Carbono/análise , Solo/química , Brasil , Sequestro de Carbono , Produtos Agrícolas/crescimento & desenvolvimento , Monitoramento Ambiental , Efeito Estufa , Humanos , Solo/análise
3.
Phys Rev Lett ; 72(13): 2061-2064, 1994 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-10055778
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...