Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 160: 106928, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37156223

RESUMO

Early diagnosis of interstitial lung diseases secondary to connective tissue diseases is critical for the treatment and survival of patients. The symptoms, like dry cough and dyspnea, appear late in the clinical history and are not specific, moreover, the current approach to confirm the diagnosis of interstitial lung disease is based on high resolution computer tomography. However, computer tomography involves x-ray exposure for patients and high costs for the Health System, therefore preventing its use for a massive screening campaign in elder people. In this work we investigate the use of deep learning techniques for the classification of pulmonary sounds acquired from patients affected by connective tissue diseases. The novelty of the work consists of a suitably developed pre-processing pipeline for de-noising and data augmentation. The proposed approach is combined with a clinical study where the ground truth is represented by high resolution computer tomography. Various convolutional neural networks have provided an overall accuracy as high as 91% in the classification of lung sounds and have led to an overwhelming diagnostic accuracy in the range 91%-93%. Modern high performance hardware for edge computing can easily support our algorithms. This solution paves the way for a vast screening campaign of interstitial lung diseases in elder people on the basis of a non-invasive and cheap thoracic auscultation.


Assuntos
Doenças do Tecido Conjuntivo , Aprendizado Profundo , Doenças Pulmonares Intersticiais , Humanos , Idoso , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Doenças do Tecido Conjuntivo/diagnóstico , Doenças do Tecido Conjuntivo/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Sons Respiratórios/diagnóstico
2.
J Acoust Soc Am ; 150(2): 1108, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34470286

RESUMO

This paper presents a circuit model of the thermoviscous acoustic wave propagation in waveguides with annular cross section. The model, validated against finite element method simulations of the input acoustic impedance, captures the annular waveguide behavior with good accuracy within a frequency bandwidth consistent with the lumped-element approximation. The cascading of multiple circuit models easily allows extending the bandwidth while preserving the same accuracy. The circuit model was derived from the low reduced frequency (LRF) wave propagation model in rectangular layers, representing a valid approximation of the complex LRF solution in annular waveguides. The simplified analytical description allows for the formulation of a compact T-network model comprised of standard circuit elements. This circuit model can be implemented in circuit simulators to accelerate both the analysis and engineering of devices having elements with annular cross section, such as micro-electro-mechanical systems devices or microphones.

3.
Materials (Basel) ; 12(21)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652682

RESUMO

Memristor-based neuromorphic systems have been proposed as a promising alternative to von Neumann computing architectures, which are currently challenged by the ever-increasing computational power required by modern artificial intelligence (AI) algorithms. The design and optimization of memristive devices for specific AI applications is thus of paramount importance, but still extremely complex, as many different physical mechanisms and their interactions have to be accounted for, which are, in many cases, not fully understood. The high complexity of the physical mechanisms involved and their partial comprehension are currently hampering the development of memristive devices and preventing their optimization. In this work, we tackle the application-oriented optimization of Resistive Random-Access Memory (RRAM) devices using a multiscale modeling platform. The considered platform includes all the involved physical mechanisms (i.e., charge transport and trapping, and ion generation, diffusion, and recombination) and accounts for the 3D electric and temperature field in the device. Thanks to its multiscale nature, the modeling platform allows RRAM devices to be simulated and the microscopic physical mechanisms involved to be investigated, the device performance to be connected to the material's microscopic properties and geometries, the device electrical characteristics to be predicted, the effect of the forming conditions (i.e., temperature, compliance current, and voltage stress) on the device's performance and variability to be evaluated, the analog resistance switching to be optimized, and the device's reliability and failure causes to be investigated. The discussion of the presented simulation results provides useful insights for supporting the application-oriented optimization of RRAM technology according to specific AI applications, for the implementation of either non-volatile memories, deep neural networks, or spiking neural networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...