Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nutr Biochem ; 101: 108938, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35017001

RESUMO

Maternal prenatal status, as encapsulated by that to which a mother is exposed through diet and environment, is a key determinant of offspring health and disease. Alterations in DNA methylation (DNAm) may be a mechanism through which suboptimal prenatal conditions confer disease risk later in life. One-carbon metabolism (OCM) is critical to both fetal development and in supplying methyl donors needed for DNAm. Plasma concentrations of one-carbon metabolites across maternal first trimester (M1), maternal term (M3), and infant cord blood (CB) at birth were tested for association with DNAm patterns in CB from the Michigan Mother and Infant Pairs (MMIP) pregnancy cohort. The Illumina Infinium MethylationEPIC BeadChip was used to quantitatively evaluate DNAm across the epigenome. Global and single-site DNAm and metabolite models were adjusted for infant sex, estimated cell type proportions, and batch as covariates. Change in mean metabolite concentration across pregnancy (M1 to M3) was significantly different for S-adenosylhomocysteine (SAH), S-adenosylmethionine (SAM), betaine, and choline. Both M1 SAH and CB SAH were significantly associated with the global distribution of DNAm in CB, with indications of a shift toward less methylation. M3 SAH and CB SAH also displayed significant associations with locus-specific DNAm in infant CB (FDR<0.05). Our findings underscore the role of maternal one-carbon metabolites in shifting the global DNAm pattern in CB and emphasizes the need to closely evaluate how dietary status influences cellular methylation potential and ultimately offspring health.


Assuntos
Carbono/metabolismo , Metilação de DNA , Epigenoma , Sangue Fetal/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Adulto , Betaína/sangue , Carbono/sangue , Colina/sangue , Estudos de Coortes , Feminino , Código das Histonas , Humanos , Recém-Nascido , Masculino , Metabolômica , Metionina/sangue , Gravidez , S-Adenosil-Homocisteína/sangue , S-Adenosilmetionina/sangue
2.
Nutrients ; 13(10)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34684365

RESUMO

As the incidence of obesity and type 2 diabetes (T2D) is occurring at a younger age, studying adolescent nutrient metabolism can provide insights on the development of T2D. Metabolic challenges, including an oral glucose tolerance test (OGTT) can assess the effects of perturbations in nutrient metabolism. Here, we present alterations in the global metabolome in response to an OGTT, classifying the influence of obesity and insulin resistance (IR) in adolescents that arrived at the clinic fasted and in a random-fed state. Participants were recruited as lean (n = 55, aged 8-17 years, BMI percentile 5-85%) and overweight and obese (OVOB, n = 228, aged 8-17 years, BMI percentile ≥ 85%). Untargeted metabolomics profiled 246 annotated metabolites in plasma at t0 and t60 min during the OGTT. Our results suggest that obesity and IR influence the switch from fatty acid (FA) to glucose oxidation in response to the OGTT. Obesity was associated with a blunted decline of acylcarnitines and fatty acid oxidation intermediates. In females, metabolites from the Fasted and Random-Fed OGTT were associated with HOMA-IR, including diacylglycerols, leucine/isoleucine, acylcarnitines, and phosphocholines. Our results indicate that at an early age, obesity and IR may influence the metabolome dynamics in response to a glucose challenge.


Assuntos
Jejum/metabolismo , Comportamento Alimentar , Resistência à Insulina , Metaboloma , Obesidade/metabolismo , Caracteres Sexuais , Adolescente , Glicemia/metabolismo , Criança , Feminino , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Cinética , Masculino , Obesidade/sangue
3.
J Nutr ; 151(10): 2868-2881, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34255076

RESUMO

Evaluating the postprandial response to a dietary challenge containing all macronutrients-carbohydrates, lipids, and protein-may provide stronger insights of metabolic health than a fasted measurement. Metabolomic profiling deepens the understanding of the homeostatic and adaptive response to a dietary challenge by classifying multiple metabolic pathways and biomarkers. A total of 26 articles were identified that measure the human blood metabolome or lipidome response to a mixed-macronutrient challenge. Most studies were cross-sectional, exploring the baseline and postprandial response to the dietary challenge. Large variations in study designs were reported, including the macronutrient and caloric composition of the challenge and the delivery of the challenge as a liquid shake or a solid meal. Most studies utilized a targeted metabolomics platform, assessing only a particular metabolic pathway, however, several studies utilized global metabolomics and lipidomics assays demonstrating the expansive postprandial response of the metabolome. The postprandial response of individual amino acids was largely dependent on the amino acid composition of the test meal, with the exception of alanine and proline, 2 nonessential amino acids. Long-chain fatty acids and unsaturated long-chain acylcarnitines rapidly decreased in response to the dietary challenges, representing the switch from fat to carbohydrate oxidation. Studies were reviewed that assessed the metabolome response in the context of obesity and metabolic diseases, providing insight on how weight status and disease influence the ability to cope with a nutrient load and return to homeostasis. Results demonstrate that the flexibility to respond to a substrate load is influenced by obesity and metabolic disease and flexibility alterations will be evident in downstream metabolites of fat, carbohydrate, and protein metabolism. In response, we propose suggestions for standardization between studies with the potential of creating a study exploring the postprandial response to a multitude of challenges with a variety of macronutrients.


Assuntos
Metaboloma , Projetos de Pesquisa , Humanos , Metabolômica , Nutrientes , Período Pós-Prandial
4.
Pediatr Res ; 89(5): 1310-1315, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32492693

RESUMO

BACKGROUND: Psychosocial stress in early childhood is associated with adult obesity and cardiometabolic disease. The association of psychosocial stress with the metabolome in childhood is unknown. METHOD: Low-income children (n = 28, mean age 1.8 years), recruited from the community, participated. Psychosocial stress was measured by diurnal salivary cortisol (cortisol intercept and slope) and by mother-reported chaos in the home using the Confusion, Hubbub, and Order Scale (CHAOS). At mean age 6.1 years, anthropometry was collected and fasting metabolites measured using an untargeted metabolomics and shotgun lipidomics platform. RESULTS: Cortisol slope was inversely associated with fatty acid (FA) 20:3, FA 20:4 and polyunsaturated fatty acids (PUFA) metabolites. A higher CHAOS score was associated with lower very long-chain PUFA metabolites and a trend towards lower long-chain PUFA containing triglycerides. CONCLUSIONS: Psychosocial stress in early childhood, measured with both biological markers and parent report, was associated with lower PUFAs later in childhood. Future work should examine potential mechanisms of association, including dietary intake or direct effects on polyunsaturated fatty acid levels or metabolism. IMPACT: In this longitudinal study, the key message is that diurnal cortisol patterns and greater parent-reported psychosocial stress exposure in early childhood are associated with lower plasma polyunsaturated fatty acid containing lipids 5 years later, potentially indicating altered dietary intake or metabolism associated with psychosocial stress. Untargeted metabolomics and lipidomics can be used to assess changes in metabolism response to psychosocial stress. Stress exposure in early childhood may be associated with the future metabolome. Future work should examine potential pathways of association, including dietary intake and direct effects on metabolism.


Assuntos
Experiências Adversas da Infância , Ácidos Graxos Insaturados/análise , Ácidos Graxos Insaturados/sangue , Lipídeos/análise , Antropometria , Biomarcadores/sangue , Criança , Pré-Escolar , Gorduras na Dieta , Ácidos Graxos , Feminino , Humanos , Hidrocortisona/metabolismo , Lactente , Estudos Longitudinais , Masculino , Metabolômica , Pobreza , Estresse Psicológico
5.
Epigenet Insights ; 13: 2516865720977888, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33354655

RESUMO

Epigenetic modifications, such as DNA methylation, influence gene expression and cardiometabolic phenotypes that are manifest in developmental periods in later life, including adolescence. Untargeted metabolomics analysis provide a comprehensive snapshot of physiological processes and metabolism and have been related to DNA methylation in adults, offering insights into the regulatory networks that influence cellular processes. We analyzed the cross-sectional correlation of blood leukocyte DNA methylation with 3758 serum metabolite features (574 of which are identifiable) in 238 children (ages 8-14 years) from the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) study. Associations between these features and percent DNA methylation in adolescent blood leukocytes at LINE-1 repetitive elements and genes that regulate early life growth (IGF2, H19, HSD11B2) were assessed by mixed effects models, adjusting for sex, age, and puberty status. After false discovery rate correction (FDR q < 0.05), 76 metabolites were significantly associated with LINE-1 DNA methylation, 27 with HSD11B2, 103 with H19, and 4 with IGF2. The ten identifiable metabolites included dicarboxylic fatty acids (five associated with LINE-1 or H19 methylation at q < 0.05) and 1-octadecanoyl-rac-glycerol (q < 0.0001 for association with H19 and q = 0.04 for association with LINE-1). We then assessed the association between these ten known metabolites and adiposity 3 years later. Two metabolites, dicarboxylic fatty acid 17:3 and 5-oxo-7-octenoic acid, were inversely associated with measures of adiposity (P < .05) assessed approximately 3 years later in adolescence. In stratified analyses, sex-specific and puberty-stage specific (Tanner stage = 2 to 5 vs Tanner stage = 1) associations were observed. Most notably, hundreds of statistically significant associations were observed between H19 and LINE-1 DNA methylation and metabolites among children who had initiated puberty. Understanding relationships between subclinical molecular biomarkers (DNA methylation and metabolites) may increase our understanding of genes and biological pathways contributing to metabolic changes that underlie the development of adiposity during adolescence.

6.
Epigenomics ; 12(23): 2077-2092, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33290095

RESUMO

Aim: To classify the association between the maternal lipidome and DNA methylation in cord blood leukocytes. Materials & methods: Untargeted lipidomics was performed on first trimester maternal plasma (M1) and delivery maternal plasma (M3) in 100 mothers from the Michigan Mother-Infant Pairs cohort. Cord blood leukocyte DNA methylation was profiled using the Infinium EPIC bead array and empirical Bayes modeling identified differential DNA methylation related to maternal lipid groups. Results: M3-saturated lysophosphatidylcholine was associated with 45 differentially methylated loci and M3-saturated lysophosphatidylethanolamine was associated with 18 differentially methylated loci. Biological pathways enriched among differentially methylated loci by M3 saturated lysophosphatidylcholines were related to cell proliferation and growth. Conclusion: The maternal lipidome may be influential in establishing the infant epigenome.


Assuntos
Metilação de DNA , Epigenoma , Lipídeos/sangue , Gravidez/sangue , Adulto , Ilhas de CpG , Feminino , Sangue Fetal/imunologia , Humanos , Recém-Nascido , Contagem de Leucócitos , Metabolismo dos Lipídeos , Masculino , Pessoa de Meia-Idade
7.
Metabolites ; 10(12)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255384

RESUMO

Modern analytical methods allow for the simultaneous detection of hundreds of metabolites, generating increasingly large and complex data sets. The analysis of metabolomics data is a multi-step process that involves data processing and normalization, followed by statistical analysis. One of the biggest challenges in metabolomics is linking alterations in metabolite levels to specific biological processes that are disrupted, contributing to the development of disease or reflecting the disease state. A common approach to accomplishing this goal involves pathway mapping and enrichment analysis, which assesses the relative importance of predefined metabolic pathways or other biological categories. However, traditional knowledge-based enrichment analysis has limitations when it comes to the analysis of metabolomics and lipidomics data. We present a Java-based, user-friendly bioinformatics tool named Filigree that provides a primarily data-driven alternative to the existing knowledge-based enrichment analysis methods. Filigree is based on our previously published differential network enrichment analysis (DNEA) methodology. To demonstrate the utility of the tool, we applied it to previously published studies analyzing the metabolome in the context of metabolic disorders (type 1 and 2 diabetes) and the maternal and infant lipidome during pregnancy.

8.
Sci Rep ; 10(1): 14209, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848180

RESUMO

Major alterations in metabolism occur during pregnancy enabling the mother to provide adequate nutrients to support infant development, affecting birth weight (BW) and potentially long-term risk of obesity and cardiometabolic disease. We classified dynamic changes in the maternal lipidome during pregnancy and identified lipids associated with Fenton BW z-score and the umbilical cord blood (CB) lipidome. Lipidomics was performed on first trimester maternal plasma (M1), delivery maternal plasma (M3), and CB plasma in 106 mother-infant dyads. Shifts in the maternal and CB lipidome were consistent with the selective transport of long-chain polyunsaturated fatty acids (PUFA) as well as lysophosphatidylcholine (LysoPC) and lysophosphatidylethanolamine (LysoPE) species into CB. Partial correlation networks demonstrated fluctuations in correlations between lipid groups at M1, M3, and CB, signifying differences in lipid metabolism. Using linear models, LysoPC and LysoPE groups in CB were positively associated with BW. M1 PUFA containing triglycerides (TG) and phospholipids were correlated with CB LysoPC and LysoPE species and total CB polyunsaturated TGs. These results indicate that early gestational maternal lipid levels influence the CB lipidome and its relationship with BW, suggesting an opportunity to modulate maternal diet and improve long-term offspring cardiometabolic health.


Assuntos
Peso ao Nascer , Sangue Fetal/metabolismo , Metabolismo dos Lipídeos , Lipidômica , Lipídeos/sangue , Gravidez/sangue , Adulto , Feminino , Humanos , Recém-Nascido , Masculino , Estudos Prospectivos
9.
J Clin Endocrinol Metab ; 105(7)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32413135

RESUMO

CONTEXT: A person's intrinsic metabolism, reflected in the metabolome, may describe the relationship between nutrient intake and metabolic health. OBJECTIVES: Untargeted metabolomics was used to identify metabolites associated with metabolic health. Path analysis classified how habitual dietary intake influences body mass index z-score (BMIz) and insulin resistance (IR) through changes in the metabolome. DESIGN: Data on anthropometry, fasting metabolites, C-peptide, and dietary intake were collected from 108 girls and 98 boys aged 8 to 14 years. Sex-stratified linear regression identified metabolites associated with BMIz and homeostatic model assessment of IR using C-peptide (HOMA-CP), accounting for puberty, age, and muscle and fat area. Path analysis identified clusters of metabolites that underlie the relationship between energy-adjusted macronutrient intake with BMIz and HOMA-CP. RESULTS: Metabolites associated with BMIz include positive associations with diglycerides among girls and positive associations with branched chain and aromatic amino acids in boys. Intermediates in fatty acid metabolism, including medium-chain acylcarnitines (AC), were inversely associated with HOMA-CP. Carbohydrate intake is positively associated with HOMA-CP through decreases in levels of AC, products of ß-oxidation. Approaching significance, fat intake is positively associated with HOMA-CP through increases in levels of dicarboxylic fatty acids, products of omega-oxidation. CONCLUSIONS: This cross-sectional analysis suggests that IR in children is associated with reduced fatty acid oxidation capacity. When consuming more grams of fat, there is evidence for increased extramitochondrial fatty acid metabolism, while higher carbohydrate intake appears to lead to decreases in intermediates of ß-oxidation. Thus, biomarkers of IR and mitochondrial oxidative capacity may depend on macronutrient intake.


Assuntos
Resistência à Insulina , Mitocôndrias/metabolismo , Estado Nutricional , Adolescente , Índice de Massa Corporal , Criança , Estudos Transversais , Dieta , Humanos , Masculino , Metaboloma , Avaliação Nutricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...