Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 469: 133923, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38457973

RESUMO

Antibiotic resistance poses an urgent public health concern, with the environment playing a crucial role in the development and dissemination of resistant bacteria. There is a growing body of research indicating that stormwater is a significant source and transport vector of resistance elements. This research sought to characterize the role of green stormwater infrastructure (GSI), designed for stormwater infiltration, in accumulating and propagating antibiotic resistance in the urban water cycle. Sampling included 24 full-scale GSI systems representing three distinct types of GSI - bioswales, bioretention cells, and constructed wetlands. The results indicated that GSI soils accumulate antibiotic resistance genes (ARGs) at elevated concentrations compared to nonengineered soils. Bioretention cells specifically harbored higher abundances of ARGs, suggesting that the type of GSI influences ARG accumulation. Interestingly, ARG diversity in GSI soils was not impacted by the type of GSI design or the diversity of the microbial community and mobile genetic elements. Instead, environmental factors (catchment imperviousness, metals, nutrients, and salts) were identified as significant drivers of ARG diversity. These findings highlight how environmental selective pressures in GSI promote ARG persistence and proliferation independently of the microbial community. Therefore, GSI systems have the potential to be a substantial contributor of abundant and diverse ARGs to the urban water cycle.


Assuntos
Antibacterianos , Microbiota , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Bactérias/genética , Solo/química , Genes Bacterianos
2.
mSphere ; 8(5): e0030723, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37681947

RESUMO

Corrosion inhibitors, including zinc orthophosphate, sodium orthophosphate, and sodium silicate, are commonly used to prevent the corrosion of drinking water infrastructure. Metals such as zinc are known stressors for antibiotic resistance selection, and phosphates can increase microbial growth in drinking water distribution systems (DWDS). Yet, the influence of corrosion inhibitor type on antimicrobial resistance in DWDS is unknown. Here, we show that sodium silicates can decrease antibiotic resistant bacteria (ARB) and antibiotic-resistance genes (ARGs), while zinc orthophosphate increases ARB and ARGs in source water microbial communities. Based on controlled bench-scale studies, zinc orthophosphate addition significantly increased the abundance of ARB resistant to ciprofloxacin, sulfonamides, trimethoprim, and vancomycin, as well as the genes sul1, qacEΔ1, an indication of resistance to quaternary ammonium compounds, and the integron-integrase gene intI1. In contrast, sodium silicate dosage at 10 mg/L resulted in decreased bacterial growth and antibiotic resistance selection compared to the other corrosion inhibitor additions. Source water collected from the drinking water treatment plant intake pipe resulted in less significant changes in ARB and ARG abundance due to corrosion inhibitor addition compared to source water collected from the pier at the recreational beach. In tandem with the antibiotic resistance shifts, significant microbial community composition changes also occurred. Overall, the corrosion inhibitor sodium silicate resulted in the least selection for antibiotic resistance, which suggests it is the preferred corrosion inhibitor option for minimizing antibiotic resistance proliferation in DWDS. However, the selection of an appropriate corrosion inhibitor must also be appropriate for the water chemistry of the system (e.g., pH, alkalinity) to minimize metal leaching first and foremost and to adhere to the lead and copper rule. IMPORTANCE Antibiotic resistance is a growing public health concern across the globe and was recently labeled the silent pandemic. Scientists aim to identify the source of antibiotic resistance and control points to mitigate the spread of antibiotic resistance. Drinking water is a direct exposure route to humans and contains antibiotic-resistant bacteria and associated resistance genes. Corrosion inhibitors are added to prevent metallic pipes in distribution systems from corroding, and the type of corrosion inhibitor selected could also have implications on antibiotic resistance. Indeed, we found that sodium silicate can minimize selection of antibiotic resistance while phosphate-based corrosion inhibitors can promote antibiotic resistance. These findings indicate that sodium silicate is a preferred corrosion inhibitor choice for mitigation of antibiotic resistance.


Assuntos
Água Potável , Microbiota , Humanos , Corrosão , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Resistência Microbiana a Medicamentos/genética , Zinco , Antibacterianos/farmacologia , Fosfatos , Sódio
3.
Int J Antimicrob Agents ; 62(2): 106848, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37201798

RESUMO

Antimicrobial resistance (AMR) is one of the most pressing public health concerns; therefore, it is imperative to advance our understanding of the factors influencing AMR from Global and One Health perspectives. To address this, Aeromonas populations were identified using 16S rRNA gene libraries among human, agriculture, aquaculture, drinking water, surface water, and wastewater samples, supporting its use as indicator bacteria to study AMR. A systematic review and meta-analysis was then performed from Global and One Health perspectives, including data from 221 articles describing 15 891 isolates from 57 countries. The interconnectedness of different environments was evident as minimal differences were identified between sectors among 21 different antimicrobials. However, resistance to critically important antibiotics (aztreonam and cefepime) was significantly higher among wastewater populations compared with clinical isolates. Additionally, isolates from untreated wastewater typically exhibited increased AMR compared with those from treated wastewater. Furthermore, aquaculture was associated with increased AMR to ciprofloxacin and tetracycline compared with wild-caught seafood. Using the World Health Organization AWaRe classifications, countries with lower consumption of "Access" compared to "Watch" drugs from 2000 to 2015 demonstrated higher AMR levels. The current analysis revealed negative correlations between AMR and anthropogenic factors, such as environmental performance indices and socioeconomic standing. Environmental health and sanitation were two of the environmental factors most strongly correlated with AMR. The current analysis highlights the negative impacts of "Watch" drug overconsumption, anthropogenic activity, absence of wastewater infrastructure, and aquaculture on AMR, thus stressing the need for proper infrastructure and global regulations to combat this growing problem.


Assuntos
Aeromonas , Anti-Infecciosos , Saúde Única , Humanos , Aeromonas/genética , Águas Residuárias , Saúde Global , RNA Ribossômico 16S , Farmacorresistência Bacteriana , Antibacterianos/farmacologia
4.
Water Environ Res ; 95(4): e10856, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36949613

RESUMO

Activated sludge is a conventional treatment process for biochemical oxygen demand (BOD) and total suspended solids (TSS) removal at water resource recovery facilities (WRRFs). Foaming events are a common operational issue in activated sludge and can lead to decreased treatment efficiency, maintenance issues, and potential environmental health risks. Stable foaming events are caused by biological and chemical drivers (i.e., microbes and surfactants) during the aeration process. However, foaming events are difficult to predict and quantify. We present an inexpensive and easy-to-use method that can be applied at WRRFs to quantify foaming potential. Subsequently, the method was applied over a year-long full-scale study while data on microbial community composition and functional parameters associated with foaming potential were collected from activated sludge samples at South Shore Water Reclamation Facility (WRF) (Oak Creek, WI). Results from the development of the foaming potential method using linear alkylbenzene sulfonate (LAS) showed that the method was reproducible (relative standard deviation <20%) and able to capture changes in foam-inducing constituents. Using full-scale activated sludge samples, higher relative abundance values for the following genera were associated with foaming events: Zoogloea, Flavobacterium, Variovorax, and Bdellovibrio. This is the first report that Variovorx and Bdellovibrio relative abundance was correlated with foaming events in activated sludge. Furthermore, the foaming potential positively correlated (ρ = 0.24) with soluble total nitrogen. Characterizing foaming events through frequent sampling and monitoring of specific genera and functional parameters may allow for predictions and preemptive mitigation efforts to avoid negative consequences in the future. PRACTITIONER POINTS: A reproducible method to measure foaming potential in activated sludge is available. Genera Zoogloea, Flavobacterium, Variovorax, and Bdellovibrio correlated with foaming events. A year-long sampling campaign of activated sludge measuring foaming potential and microbial community composition was conducted at South Shore Water Reclamation Facility in Oak Creek, WI. More research at other facilities with this method is needed to understand links between microbes and foaming.


Assuntos
Microbiota , Purificação da Água , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Nitrogênio , Água , Reatores Biológicos
5.
Microbiol Resour Announc ; 11(7): e0031922, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35727055

RESUMO

Wastewater microbiome research often relies on sequencing of hypervariable regions of 16S rRNA genes, which are difficult to classify at refined taxonomic levels. Here, we introduce a data set of near-full-length 16S rRNA genes from samples designed to capture known geographic and seasonal variations in municipal wastewater microbial communities.

6.
Microbiome ; 9(1): 116, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016155

RESUMO

BACKGROUND: Microorganisms in urban sanitary sewers exhibit community properties that suggest sewers are a novel ecosystem. Sewer microorganisms present both an opportunity as a control point for wastewater treatment and a risk to human health. If treatment processes are to be improved and health risks quantified, then it is necessary to understand microbial distributions and dynamics within this community. Here, we use 16S rRNA gene sequencing to characterize raw influent wastewater bacterial communities in a 5-year time series from two wastewater treatment plants in Milwaukee, WI; influent wastewater from 77 treatment plants across the USA; and wastewater in 12 Milwaukee residential sewers. RESULTS: In Milwaukee, we find that in transit from residences to treatment plants, the human bacterial component of wastewater decreases in proportion and exhibits stochastic temporal variation. In contrast, the resident sewer community increases in abundance during transit and cycles seasonally according to changes in wastewater temperature. The result is a bacterial community that assembles into two distinct community states each year according to the extremes in wastewater temperature. Wastewater bacterial communities from other northern US cities follow temporal trends that mirror those in Milwaukee, but southern US cities have distinct community compositions and differ in their seasonal patterns. CONCLUSIONS: Our findings provide evidence that environmental conditions associated with seasonal change and climatic differences related to geography predictably structure the bacterial communities residing in below-ground sewer pipes. Video abstract.


Assuntos
Esgotos , Águas Residuárias , Ecossistema , Humanos , RNA Ribossômico 16S/genética , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...