Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 377(6608): 870-874, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35981022

RESUMO

The ambient metastability of the rock-salt phase in well-defined model systems comprising nanospheres or nanorods of cadmium selenide, cadmium sulfide, or both was investigated as a function of composition, initial crystal phase, particle structure, shape, surface functionalization, and ordering level of their assemblies. Our experiments show that these nanocrystal systems exhibit ligand-tailorable reversibility in the rock salt-to-zinc blende solid-phase transformation. Interparticle sintering was used to engineer kinetic barriers in the phase transformation to produce ambient-pressure metastable rock-salt structures in a controllable manner. Interconnected nanocrystal networks were identified as an essential structure that hosted metastable high-energy phases at ambient conditions. These findings suggest general rules for transformation-barrier engineering that are useful in the rational design of next-generation materials.

2.
Sci Total Environ ; 807(Pt 1): 150658, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34619196

RESUMO

Lead (Pb) is one of the most common metals exceeding human health risk guidelines for soil concentrations worldwide. Pb bioaccessibility is known to vary depending on soil physiochemical characteristics and, as a result, in vitro and in vivo tests exist that are used to estimate bioaccessible Pb in contaminated soils. Although in vitro tests such as the relative bioaccessibility leaching procedure (RBALP) present simpler and more cost-effective risk assessments than in vivo methods, soil tests such as Mehlich-3, Modified Morgan, and ammonium bicarbonate-diethylenetriamine pentaacetate (AB-DTPA) extractions are extremely routine and even more cost-effective. Currently, there are few comparisons examining the viability of common soil nutrient tests for assessing Pb bioaccessibility in soils from contaminated sites with extremely high total Pb concentrations or for sites that have received amendments, such as those containing compost, iron, and/or phosphorus, intended to immobilize Pb. Here, we examine the correlation between RBALP Pb and Pb as determined using three commonly utilized soil tests, Mehlich-3, Modified Morgan, and AB-DTPA, in archived samples from one Pb-contaminated site receiving compost amendment (Seattle, WA, USA) and one extremely Pb-contaminated site receiving mixtures of compost, P, and Fe (Joplin, MO, USA). At both the Seattle and Joplin sites separately, RBALP Pb was significantly correlated with all three soil nutrient test values, regardless of soil amendment. However, RBALP was only significantly correlated with Modified Morgan and total Pb when examining the Joplin and Seattle data together, likely resulting from different factors controlling Pb solubility at the two sites. These findings suggest that a diverse suite of relatively inexpensive and accessible soil nutrient test methods correlate with bioaccessible Pb at a specific site, regardless of whether Pb-immobilizing amendments have been used.


Assuntos
Poluentes do Solo , Solo , Poluição Ambiental , Humanos , Chumbo , Nutrientes , Poluentes do Solo/análise
3.
J Am Chem Soc ; 135(16): 6022-5, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23581793

RESUMO

This Communication reports that needle-like supercrystalline colloidal particles can be synthesized through anisotropy-driven self-assembly of 1,12-dodecanediamine-functionalized CdSe/CdS core/shell nanorods. The resulting superparticles exhibit both 1D lamellar and 2D hexagonal supercrystalline orders along directions parallel and perpendicular to the long axis of constituent nanorods, respectively. Our results show that the needle-like superparticles can be unidirectionally aligned through capillary forces on a patterned solid surface and further transferred into macroscopic, uniform, freestanding polymer films, which exhibit strong linear polarized PL with an enhanced polarization ratio, and are useful as energy down-conversion phosphors in polarized LEDs.


Assuntos
Nanotubos , Semicondutores , Anisotropia , Cádmio/química , Compostos de Cádmio/química , Cristalização , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Selênio/química , Sulfetos/química
4.
Chem Soc Rev ; 42(7): 2804-23, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23104182

RESUMO

Colloidal superparticles are size- and shape-controlled nanoparticle assemblies in the form of colloidal particles. Because these superparticles can exhibit physical and chemical properties different from both individual nanoparticles and their bulk assemblies, the development of superparticle synthesis has attracted significant research attention and is emerging as a new frontier in the field of nanotechnology. In this review, we discuss theoretical considerations on the nucleation and growth of colloidal superparticles. We then present recent progress in the synthesis and characterization of monodispersed colloidal superparticles, which are important for applications such as biomedical diagnosis, biological separation, and light emitting devices.

5.
J Am Chem Soc ; 134(44): 18225-8, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23057799

RESUMO

This communication reports a shape-controlled synthesis of colloidal superparticles (SPs) from iron oxide nanocubes. Our results show that the formation of SPs is under thermodynamic control and that their shape is determined by Gibbs free energy minimization. The resulting SPs adopt a simple-cubic superlattice structure, and their shape can be tuned between spheres and cubes by varying the relative free energy contributions from the surface and bulk free energy terms. The formation of sphere-shaped SPs from nanocubes suggests that the size-dependent hydration effect predicted by the Lum-Chandler-Weeks theory plays a very important role in the self-assembly of nano-objects. In addition, the iron oxide SPs exhibit shape-dependent therapeutic effects in magnetomechanical treatments of cancer cells in vitro.

6.
Science ; 338(6105): 358-63, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23087242

RESUMO

Colloidal superparticles are nanoparticle assemblies in the form of colloidal particles. The assembly of nanoscopic objects into mesoscopic or macroscopic complex architectures allows bottom-up fabrication of functional materials. We report that the self-assembly of cadmium selenide-cadmium sulfide (CdSe-CdS) core-shell semiconductor nanorods, mediated by shape and structural anisotropy, produces mesoscopic colloidal superparticles having multiple well-defined supercrystalline domains. Moreover, functionality-based anisotropic interactions between these CdSe-CdS nanorods can be kinetically introduced during the self-assembly and, in turn, yield single-domain, needle-like superparticles with parallel alignment of constituent nanorods. Unidirectional patterning of these mesoscopic needle-like superparticles gives rise to the lateral alignment of CdSe-CdS nanorods into macroscopic, uniform, freestanding polymer films that exhibit strong photoluminescence with a striking anisotropy, enabling their use as downconversion phosphors to create polarized light-emitting diodes.

8.
J Am Chem Soc ; 133(36): 14327-37, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21827194

RESUMO

This Article reports a mechanistic study on the formation of colloidal UO(2)/In(2)O(3) and FePt/In(2)O(3) heterodimer nanocrystals. These dimer nanocrystals were synthesized via the growth of In(2)O(3) as the epitaxial material onto the seed nanocrystals of UO(2) or FePt. The resulting dimer nanocrystals were characterized using X-ray powder diffraction (XRD), energy dispersion spectroscopy, transmission electron microscopy (TEM), scanning transmission electron microscopy, and high-resolution TEM (HRTEM). The results from XRD and HRTEM clearly show that lattice strains exist in both of these dimer nanocrystals. Interestingly, the lattice of In(2)O(3) expands in UO(2)/In(2)O(3) dimers, whereas FePt/In(2)O(3) dimers exhibit compressed In(2)O(3) lattices. Using HRTEM and nanocrystal structure simulations, we have identified the crystallographic orientation of the attachment of the two segments in these two types of dimers. An unconventional Miller index was introduced to describe the crystallographic orientation of these heterodimer nanocrystals. On the basis of the results herein as well as those from other researchers, we propose an empirical law for the determination of the crystallographic attachment orientation in heterodimers: instead of growth on the facet of the seed nanocrystals where lattice mismatch is minimized, the growth of an epitaxial material often chooses the crystal facets where the first atomic monolayer of this material has the strongest affinity for the seed nanocrystals.


Assuntos
Índio/química , Ferro/química , Nanopartículas/química , Compostos Organometálicos/química , Platina/química , Cristalografia , Dimerização , Microscopia Eletrônica de Transmissão e Varredura , Difração de Raios X
9.
J Am Chem Soc ; 133(32): 12664-74, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21702497

RESUMO

This paper reports that gas bubbles can be used to tailor the kinetics of the nucleation and growth of inorganic-nanocrystals in a colloidal synthesis. We conducted a mechanistic study of the synthesis of colloidal iron oxide nanocrystals using gas bubbles generated by boiling solvents or artificial Ar bubbling. We identified that bubbling effects take place through absorbing local latent heat released from the exothermic reactions involved in the nucleation and growth of iron oxide nanocrystals. Our results show that gas bubbles display a stronger effect on the nucleation of iron oxide nanocrystals than on their growth. These results indicate that the nucleation and growth of iron oxide nanocrystals may rely on different types of chemical reactions between the iron-oleate decomposition products: the nucleation relies on the strongly exothermic, multiple-bond formation reactions, whereas the growth of iron oxide nanocrystals may primarily depend upon single-bond formation reactions. The identification of exothermic reactions is further consistent with our results in the synthesis of iron oxide nanocrystals with boiling solvents at reaction temperatures ranging from 290 to 365 °C, by which we determined the reaction enthalpy in the nucleation of iron oxide nanocrystals to be -142 ± 12 kJ/mol. Moreover, our results suggest that a prerequisite for effectively suppressing secondary nucleation in a colloidal synthesis is that the primary nucleation must produce a critical amount of nuclei, and this finding is important for a priori design of colloidal synthesis of monodispersed nanocrystals in general.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...