Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone ; 186: 117173, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38906519

RESUMO

Postmenopausal osteoporosis, marked by estrogen deficiency, is a major contributor to osteoporotic fractures, yet early prediction of fractures in this population remains challenging. Our goal was to explore the temporal changes in bone-specific inflammation, oxidative stress, bone turnover, and bone-matrix water, and their relationship with estrogen deficiency-induced modifications in bone structure and mechanical properties. Additionally, we sought to determine if emerging clinically translatable imaging techniques could capture early bone modifications prior to standard clinical imaging. Two-month-old female Sprague Dawley rats (n = 48) underwent ovariectomy (OVX, n = 24) or sham operations (n = 24). A subgroup of n = 8 rats per group was sacrificed at 2-, 5-, and 10-weeks post-surgery to assess the temporal relationships of inflammation, oxidative stress, bone turnover, bone matrix water, mechanics, and imaging outcomes. OVX rats exhibited higher body weight compared to sham rats at all time points. By 5-weeks, OVX animals showed elevated markers of inflammation and oxidative stress in cortical bone, which persisted throughout the study, while cortical bone formation rate did not differ from sham until 10-weeks. DXA outcomes did not reveal differences between OVX and sham at any time point. Bound water, assessed using ultrashort echo time magnetic resonance imaging (UTE MRI), was lower in OVX at the earliest time point (2-weeks) and reduced again at 10-weeks with no difference at 5-weeks. These data demonstrate that bound water assessment using novel UTE MRI technology was lower at the earliest time point following OVX. However, no temporal relationship with bone turnover, inflammation, or oxidative stress was observed at the time points assessed in this study. These findings underscore both the increased need to understand bone hydration changes and highlight the usefulness of UTE MRI for non-invasive bone hydration measurements.


Assuntos
Matriz Óssea , Remodelação Óssea , Estrogênios , Ovariectomia , Estresse Oxidativo , Ratos Sprague-Dawley , Animais , Feminino , Remodelação Óssea/fisiologia , Estrogênios/deficiência , Estrogênios/metabolismo , Matriz Óssea/metabolismo , Água/metabolismo , Ratos , Inflamação/patologia , Inflamação/metabolismo , Fenômenos Biomecânicos , Microtomografia por Raio-X
2.
JBMR Plus ; 8(2): ziae004, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38505524

RESUMO

Skeletal fragility and high fracture rates are common in CKD. A key component of bone loss in CKD with secondary hyperparathyroidism is high bone turnover and cortical bone deterioration through both cortical porosity and cortical thinning. We hypothesized that RANKL drives high bone resorption within cortical bone leading to the development of cortical porosity in CKD (study 1) and that systemic inhibition of RANKL would mitigate the skeletal phenotype of CKD (study 2). In study 1, we assessed the skeletal properties of male and female Dmp1-cre RANKLfl/fl (cKO) and control genotype (Ranklfl/fl; Con) mice after 10 wk of adenine-induced CKD (AD; 0.2% dietary adenine). All AD mice regardless of sex or genotype had elevated blood urea nitrogen and high PTH. Con AD mice in both sexes had cortical porosity and lower cortical thickness as well as high osteoclast-covered trabecular surfaces and higher bone formation rate. cKO mice had preserved cortical bone microarchitecture despite high circulating PTH as well as no CKD-induced increases in osteoclasts. In study 2, male mice with established AD CKD were either given a single injection of an anti-RANKL antibody (5 mg/kg) 8 wk post-induction of CKD or subjected to 3×/wk dosing with risedronate (1.2 µg/kg) for 4 wk. Anti-RANKL treatment significantly reduced bone formation rate as well as osteoclast surfaces at both trabecular and cortical pore surfaces; risedronate treatment had little effect on these bone parameters. In conclusion, these studies demonstrate that bone-specific RANKL is critical for the development of high bone formation/high osteoclasts and cortical bone loss in CKD with high PTH. Additionally, systemic anti-RANKL ligand therapy in established CKD may help prevent the propagation of cortical bone loss via suppression of bone turnover.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...