Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 187: 107755, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31408630

RESUMO

Dark-rearing has been found to slow the rate of retinal degeneration in albino P23H but not S334ter mutant rhodopsin transgenic (Tg) rats. Since eye pigmentation has the same protective slowing effect as dark-rearing in RCS rats, we examined whether eye pigmentation has a comparable slowing effect in the different mutant rhodopsin Tg rats. Different lines of albino P23H and S334ter Tg rats on the Sprague-Dawley (SD) background were bred to Long-Evans (LE) rats to produce pigmented Tg rats. These were compared to albino Tg rats at postnatal days of different ages using the outer nuclear layer (ONL) as a morphological measure of photoreceptor number and electroretinogram (ERG) a- and b-wave amplitudes as a measure of retinal function. When compared to albino P23H rats, pigmented P23H rats had a slower rate of degeneration as measured by greater ONL thicknesses and greater ERG a- and b-wave amplitudes. By contrast, pigmented S334ter rats showed no difference in ONL thicknesses or ERG a- and b-wave amplitudes when compared to their albino equivalents. Thus, degeneration of photoreceptors in P23H Tg rats is slowed by eye pigmentation as measured by ONL thickness, while it is not in the S334ter Tg rats. Eye pigmentation also protects functional changes in ERG a- and b-waves for the P23H lines, but not for the S334ter lines.


Assuntos
Cor de Olho/genética , Retina/fisiopatologia , Degeneração Retiniana/genética , Degeneração Retiniana/fisiopatologia , Rodopsina/genética , Animais , Eletrorretinografia , Mutação , Fenótipo , Células Fotorreceptoras de Vertebrados/patologia , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Ratos Transgênicos
2.
Adv Exp Med Biol ; 1185: C1, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32274704

RESUMO

The title of the chapter is "Melatonin as the Possible Link Between Age-Related Retinal Degeneration and the Disrupted Circadian Rhythm in Elderly" but degeneration was incorrectly published as regeneration. Now this has been corrected to degeneration.

5.
Exp Eye Res ; 167: 56-90, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29122605

RESUMO

We produced 8 lines of transgenic (Tg) rats expressing one of two different rhodopsin mutations in albino Sprague-Dawley (SD) rats. Three lines were generated with a proline to histidine substitution at codon 23 (P23H), the most common autosomal dominant form of retinitis pigmentosa in the United States. Five lines were generated with a termination codon at position 334 (S334ter), resulting in a C-terminal truncated opsin protein lacking the last 15 amino acid residues and containing all of the phosphorylation sites involved in rhodopsin deactivation, as well as the terminal QVAPA residues important for rhodopsin deactivation and trafficking. The rates of photoreceptor (PR) degeneration in these models vary in proportion to the ratio of mutant to wild-type rhodopsin. The models have been widely studied, but many aspects of their phenotypes have not been described. Here we present a comprehensive study of the 8 Tg lines, including the time course of PR degeneration from the onset to one year of age, retinal structure by light and electron microscopy (EM), hemispheric asymmetry and gradients of rod and cone degeneration, rhodopsin content, gene dosage effect, rapid activation and invasion of the outer retina by presumptive microglia, rod outer segment disc shedding and phagocytosis by the retinal pigmented epithelium (RPE), and retinal function by the electroretinogram (ERG). The biphasic nature of PR cell death was noted, as was the lack of an injury-induced protective response in the rat models. EM analysis revealed the accumulation of submicron vesicular structures in the interphotoreceptor space during the peak period of PR outer segment degeneration in the S334ter lines. This is likely due to the elimination of the trafficking consensus domain as seen before as with other rhodopsin mutants lacking the C-terminal QVAPA. The 8 rhodopsin Tg lines have been, and will continue to be, extremely useful models for the experimental study of inherited retinal degenerations.


Assuntos
Modelos Animais de Doenças , Células Fotorreceptoras de Vertebrados/patologia , Mutação Puntual , Retina/fisiologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Rodopsina/genética , Animais , Eletrorretinografia , Microscopia , Microscopia Eletrônica , Fenótipo , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Degeneração Retiniana/fisiopatologia
6.
Exp Eye Res ; 165: 175-181, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28974356

RESUMO

Retinal degenerations, including age-related macular degeneration and the retinitis pigmentosa family of diseases, are among the leading causes of legal blindness in the United States. We previously found that Stanniocalcin-1 (STC-1) reduced photoreceptor loss in the S334ter-3 and Royal College of Surgeons rat models of retinal degeneration. The results were attributed in part to a reduction in oxidative stress. Herein, we tested the hypothesis that long-term delivery of STC-1 would provide therapeutic rescue in more chronic models of retinal degeneration. To achieve sustained delivery, we produced an adeno-associated virus (AAV) construct to express STC-1 (AAV-STC-1) under the control of a retinal ganglion cell targeting promoter human synapsin 1 (hSYN1). AAV-STC-1 was injected intravitreally into the P23H-1 and S334ter-4 rhodopsin transgenic rats at postnatal day 10. Tissues were collected at postnatal day 120 for confirmation of STC-1 overexpression and histologic and molecular analysis. Electroretinography (ERG) was performed in a cohort of animals at that time. Overexpression of STC-1 resulted in a significant preservation of photoreceptors as assessed by outer nuclear thickness in the P23H-1 (P < 0.05) and the S334ter-4 (P < 0.005) models compared to controls. Additionally, retinal function was significantly improved in the P23H-1 model with overexpressed STC-1 as assessed by ERG analysis (scotopic b-wave P < 0.005 and photopic b-wave P < 0.05). Microarray analysis identified common downstream gene expression changes that occurred in both models. Genes of interest based on their function were selected for validation by quantitative real-time PCR and were significantly increased in the S334ter-4 model.


Assuntos
Dependovirus , Glicoproteínas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Retinose Pigmentar/tratamento farmacológico , Animais , Modelos Animais de Doenças , Eletrorretinografia , Glicoproteínas/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Células Fotorreceptoras de Vertebrados/patologia , Ratos , Ratos Transgênicos , Retinose Pigmentar/patologia
7.
J Lipid Res ; 57(5): 818-31, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26947037

RESUMO

Retinal degeneration (RD) affects millions of people and is a major cause of ocular impairment and blindness. With a wide range of mutations and conditions leading to degeneration, targeting downstream processes is necessary for developing effective treatments. Ceramide and sphingosine-1-phosphate, a pair of bioactive sphingolipids, are involved in apoptosis and its prevention, respectively. Apoptotic cell death is a potential driver of RD, and in order to understand the mechanism of degeneration and potential treatments, we studied rhodopsin mutant RD model, P23H-1 rats. Investigating this genetic model of human RD allows us to investigate the association of sphingolipid metabolites with the degeneration of the retina in P23H-1 rats and the effects of a specific modulator of sphingolipid metabolism, FTY720. We found that P23H-1 rat retinas had altered sphingolipid profiles that, when treated with FTY720, were rebalanced closer to normal levels. FTY720-treated rats also showed protection from RD compared with their vehicle-treated littermates. Based on these data, we conclude that sphingolipid dysregulation plays a secondary role in retinal cell death, which may be common to many forms of RDs, and that the U.S. Food and Drug Administration-approved drug FTY720 or related compounds that modulate sphingolipid metabolism could potentially delay the cell death.


Assuntos
Cloridrato de Fingolimode/farmacologia , Distrofias Retinianas/metabolismo , Esfingolipídeos/metabolismo , Animais , Vias Biossintéticas , Progressão da Doença , Avaliação Pré-Clínica de Medicamentos , Cloridrato de Fingolimode/uso terapêutico , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Ratos Sprague-Dawley , Distrofias Retinianas/tratamento farmacológico , Esfingomielina Fosfodiesterase/metabolismo
8.
Hum Genet ; 135(3): 327-43, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26825853

RESUMO

MERTK is an essential component of the signaling network that controls phagocytosis in retinal pigment epithelium (RPE), the loss of which results in photoreceptor degeneration. Previous proof-of-concept studies have demonstrated the efficacy of gene therapy using human MERTK (hMERTK) packaged into adeno-associated virus (AAV2) in treating RCS rats and mice with MERTK deficiency. The purpose of this study was to assess the safety of gene transfer via subretinal administration of rAAV2-VMD2-hMERTK in subjects with MERTK-associated retinitis pigmentosa (RP). After a preclinical phase confirming the safety of the study vector in monkeys, six patients (aged 14 to 54, mean 33.3 years) with MERTK-related RP and baseline visual acuity (VA) ranging from 20/50 to <20/6400 were entered in a phase I open-label, dose-escalation trial. One eye of each patient (the worse-seeing eye in five subjects) received a submacular injection of the viral vector, first at a dose of 150 µl (5.96 × 10(10)vg; 2 patients) and then 450 µl (17.88 × 10(10)vg; 4 patients). Patients were followed daily for 10 days at 30, 60, 90, 180, 270, 365, 540, and 730 days post-injection. Collected data included (1) full ophthalmologic examination including best-corrected VA, intraocular pressure, color fundus photographs, macular spectral domain optical coherence tomography and full-field stimulus threshold test (FST) in both the study and fellow eyes; (2) systemic safety data including CBC, liver and kidney function tests, coagulation profiles, urine analysis, AAV antibody titers, peripheral blood PCR and ASR measurement; and (3) listing of ophthalmological or systemic adverse effects. All patients completed the 2-year follow-up. Subretinal injection of rAAV2-VMD2-hMERTK was associated with acceptable ocular and systemic safety profiles based on 2-year follow-up. None of the patients developed complications that could be attributed to the gene vector with certainty. Postoperatively, one patient developed filamentary keratitis, and two patients developed progressive cataract. Of these two patients, one also developed transient subfoveal fluid after the injection as well as monocular oscillopsia. Two patients developed a rise in AAV antibodies, but neither patient was positive for rAAV vector genomes via PCR. Three patients also displayed measurable improved visual acuity in the treated eye following surgery, although the improvement was lost by 2 years in two of these patients. Gene therapy for MERTK-related RP using careful subretinal injection of rAAV2-VMD2-hMERTK is not associated with major side effects and may result in clinical improvement in a subset of patients.


Assuntos
Terapia Genética/métodos , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Adolescente , Adulto , Animais , Dependovirus/genética , Modelos Animais de Doenças , Determinação de Ponto Final , Feminino , Seguimentos , Vetores Genéticos , Humanos , Macaca , Masculino , Pessoa de Meia-Idade , Mutação , Complicações Pós-Operatórias/terapia , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Líquido Sub-Retiniano , Tomografia de Coerência Óptica , Resultado do Tratamento , Acuidade Visual , Adulto Jovem , c-Mer Tirosina Quinase
9.
Adv Exp Med Biol ; 854: 185-91, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427410

RESUMO

RHO (Rod opsin) encodes a G-protein coupled receptor that is expressed exclusively by rod photoreceptors of the retina and forms the essential photopigment, rhodopsin, when coupled with 11-cis-retinal. Many rod opsin disease -mutations cause rod opsin protein misfolding and trigger endoplasmic reticulum (ER) stress, leading to activation of the Unfolded Protein Response (UPR) signal transduction network. Chop is a transcriptional activator that is induced by ER stress and promotes cell death in response to chronic ER stress. Here, we examined the role of Chop in transgenic mice expressing human P23H rhodopsin (hP23H Rho Tg) that undergo retinal degeneration. With the exception of one time point, we found no significant induction of Chop in these animals and no significant change in retinal degeneration by histology and electrophysiology when hP23H Rho Tg animals were bred into a Chop (-/-) background. Our results indicate that Chop does not play a significant causal role during retinal degeneration in these animals. We suggest that other modules of the ER stress-induced UPR signaling network may be involved photoreceptor disease induced by P23H rhodopsin.


Assuntos
Degeneração Retiniana/genética , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Rodopsina/genética , Fator de Transcrição CHOP/genética , Animais , Sobrevivência Celular/genética , Eletrorretinografia , Expressão Gênica , Humanos , Camundongos Knockout , Camundongos Transgênicos , Degeneração Retiniana/metabolismo , Degeneração Retiniana/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rodopsina/metabolismo , Fator de Transcrição CHOP/deficiência , Transgenes/genética
10.
Adv Exp Med Biol ; 854: 487-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26427450

RESUMO

MERTK-associated retinal degenerations are thought to have defects in phagocytosis of shed outer segment membranes by the retinal pigment epithelium (RPE), as do the rodent models of these diseases. We have subretinally injected an RPE-specific AAV2 vector, AAV2-VMD2-hMERTK, to determine whether this would provide long-term photoreceptor rescue in the RCS rat, which it did for up to 6.5 months, the longest time point examined. Moreover, we found phagosomes in the RPE in the rescued regions of RCS retinas soon after the onset of light. The same vector also had a major protective effect in Mertk-null mice, with a concomitant increase in ERG response amplitudes in the vector-injected eyes. These findings suggest that planned clinical trials with this vector will have a favorable outcome.


Assuntos
Terapia Genética/métodos , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Animais , Bestrofinas , Canais de Cloreto/genética , Dependovirus/genética , Modelos Animais de Doenças , Eletrorretinografia , Proteínas do Olho/genética , Vetores Genéticos/genética , Humanos , Camundongos Knockout , Fagocitose/genética , Fagocitose/fisiologia , Fagossomos/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/metabolismo , Ratos Mutantes , Ratos Sprague-Dawley , Receptores Proteína Tirosina Quinases/deficiência , Receptores Proteína Tirosina Quinases/metabolismo , Degeneração Retiniana/fisiopatologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/fisiopatologia , Resultado do Tratamento , c-Mer Tirosina Quinase
11.
PLoS Genet ; 11(12): e1005723, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26656104

RESUMO

Inherited photoreceptor degenerations (IPDs) are the most genetically heterogeneous of Mendelian diseases. Many IPDs exhibit substantial phenotypic variability, but the basis is usually unknown. Mutations in MERTK cause recessive IPD phenotypes associated with the RP38 locus. We have identified a murine genetic modifier of Mertk-associated photoreceptor degeneration, the C57BL/6 (B6) allele of which acts as a suppressor. Photoreceptors degenerate rapidly in Mertk-deficient animals homozygous for the 129P2/Ola (129) modifier allele, whereas animals heterozygous for B6 and 129 modifier alleles exhibit an unusual intermixing of degenerating and preserved retinal regions, with females more severely affected than males. Mertk-deficient mice homozygous for the B6 modifier allele display degeneration only in the far periphery, even at 8 months of age, and have improved retinal function compared to animals homozygous for the 129 allele. We genetically mapped the modifier to an approximately 2-megabase critical interval that includes Tyro3, a paralog of Mertk. Tyro3 expression in the outer retina varies with modifier genotype in a manner characteristic of a cis-acting expression quantitative trait locus (eQTL), with the B6 allele conferring an approximately three-fold higher expression level. Loss of Tyro3 function accelerates the pace of photoreceptor degeneration in Mertk knockout mice, and TYRO3 protein is more abundant in the retinal pigment epithelium (RPE) adjacent to preserved central retinal regions of Mertk knockout mice homozygous for the B6 modifier allele. Endogenous human TYRO3 protein co-localizes with nascent photoreceptor outer segment (POS) phagosomes in a primary RPE cell culture assay, and expression of murine Tyro3 in cultured cells stimulates phagocytic ingestion of POS. Our findings demonstrate that Tyro3 gene dosage modulates Mertk-associated retinal degeneration, provide strong evidence for a direct role for TYRO3 in RPE phagocytosis, and suggest that an eQTL can modify a recessive IPD.


Assuntos
Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Degeneração Retiniana/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Fagocitose , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Proteínas Proto-Oncogênicas/biossíntese , Receptores Proteína Tirosina Quinases/biossíntese , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina/patologia , c-Mer Tirosina Quinase
12.
Invest Ophthalmol Vis Sci ; 56(11): 6961-70, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26513501

RESUMO

PURPOSE: Endoplasmic reticulum (ER) stress activates inositol requiring enzyme 1 (IRE1), a key regulator of the unfolded protein response. The ER stress activated indicator (ERAI) transgenic mouse expresses a yellow fluorescent GFP variant (Venus) when IRE1 is activated by ER stress. We tested whether ERAI mice would allow for real-time longitudinal studies of ER stress in living mouse eyes. METHODS: We chemically and genetically induced ER stress, and qualitatively and quantitatively studied the Venus signal by fluorescence ophthalmoscopy. We determined retinal cell types that contribute to the signal by immunohistology, and we performed molecular and biochemical assays using whole retinal lysates to assess activity of the IRE1 pathway. RESULTS: We found qualitative increase in vivo in fluorescence signal at sites of intravitreal tunicamycin injection in ERAI eyes, and quantitative increase in ERAI mice mated to RhoP23H mice expressing ER stress-inducing misfolded rhodopsin protein. As expected, we found that increased Venus signal arose primarily from photoreceptors in RhoP23H/+;ERAI mice. We found increased Xbp1S and XBP1s transcriptional target mRNA levels in RhoP23H/+;ERAI retinas compared to Rho+/+;ERAI retinas, and that Venus signal increased in ERAI retinas as a function of age. CONCLUSIONS: Fluorescence ophthalmoscopy of ERAI mice enables in vivo visualization of retinas undergoing ER stress. ER stress activated indicator mice enable identification of individual retinal cells undergoing ER stress by immunohistochemistry. ER stress activated indicator mice show higher Venus signal at older ages, likely arising from amplification of basal retinal ER stress levels by GFP's inherent stability.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Retina/diagnóstico por imagem , Animais , Retículo Endoplasmático/diagnóstico por imagem , Retículo Endoplasmático/patologia , Retículo Endoplasmático/fisiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estudos Longitudinais , Proteínas de Membrana/análise , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Oftalmoscopia , Reação em Cadeia da Polimerase , Proteínas Serina-Treonina Quinases/análise , Proteínas Serina-Treonina Quinases/fisiologia , Retina/química , Retina/efeitos dos fármacos , Retina/patologia , Retina/fisiologia , Transdução de Sinais/fisiologia , Tomografia de Coerência Óptica , Tunicamicina/farmacologia , Ultrassonografia
13.
Invest Ophthalmol Vis Sci ; 56(11): 6362-75, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26436889

RESUMO

PURPOSE: To preserve photoreceptor cell structure and function in a rodent model of retinitis pigmentosa with P23H rhodopsin by selective inhibition of the mutant rhodopsin allele using a second generation antisense oligonucleotide (ASO). METHODS: Wild-type mice and rats were treated with ASO by intravitreal (IVT) injection and rhodopsin mRNA and protein expression were measured. Transgenic rats expressing the murine P23H rhodopsin gene (P23H transgenic rat Line 1) were administered either a mouse-specific P23H ASO or a control ASO. The contralateral eye was injected with PBS and used as a comparator control. Electroretinography (ERG) measurements and analyses of the retinal outer nuclear layer were conducted and correlated with rhodopsin mRNA levels. RESULTS: Rhodopsin mRNA and protein expression was reduced after a single ASO injection in wild-type mice with a rhodopsin-specific ASO. Transgenic rat eyes that express a murine P23H rhodopsin gene injected with a murine P23H ASO had a 181 ± 39% better maximum amplitude response (scotopic a-wave) as compared with contralateral PBS-injected eyes; the response in control ASO eyes was not significantly different from comparator contralateral eyes. Morphometric analysis of the outer nuclear layer showed a significantly thicker nuclear layer in eyes injected with murine P23H ASO (18%) versus contralateral PBS-injected eyes. CONCLUSIONS: Allele-specific ASO-mediated knockdown of mutant P23H rhodopsin expression slowed the rate of photoreceptor degeneration and preserved the function of photoreceptor cells in eyes of the P23H rhodopsin transgenic rat. Our data indicate that ASO treatment is a potentially effective therapy for the treatment of retinitis pigmentosa.


Assuntos
Regulação da Expressão Gênica , Degeneração Macular/prevenção & controle , Oligonucleotídeos Antissenso/genética , RNA Mensageiro/genética , Rodopsina/genética , Alelos , Animais , Western Blotting , Modelos Animais de Doenças , Eletrorretinografia , Degeneração Macular/genética , Degeneração Macular/metabolismo , Masculino , Camundongos , Ratos , Ratos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Rodopsina/biossíntese
14.
PLoS One ; 10(5): e0127319, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26009893

RESUMO

Rod-cone dystrophy, also known as retinitis pigmentosa (RP), is the most common inherited degenerative photoreceptor disease, for which no therapy is currently available. The P23H rat is one of the most commonly used autosomal dominant RP models. It has been created by incorporation of a mutated mouse rhodopsin (Rho) transgene in the wild-type (WT) Sprague Dawley rat. Detailed genetic characterization of this transgenic animal has however never been fully reported. Here we filled this knowledge gap on P23H Line 1 rat (P23H-1) and provide additional phenotypic information applying non-invasive and state-of-the-art in vivo techniques that are relevant for preclinical therapeutic evaluations. Transgene sequence was analyzed by Sanger sequencing. Using quantitative PCR, transgene copy number was calculated and its expression measured in retinal tissue. Full field electroretinography (ERG) and spectral domain optical coherence tomography (SD-OCT) were performed at 1-, 2-, 3- and 6-months of age. Sanger sequencing revealed that P23H-1 rat carries the mutated mouse genomic Rho sequence from the promoter to the 3' UTR. Transgene copy numbers were estimated at 9 and 18 copies in the hemizygous and homozygous rats respectively. In 1-month-old hemizygous P23H-1 rats, transgene expression represented 43% of all Rho expressed alleles. ERG showed a progressive rod-cone dysfunction peaking at 6 months-of-age. SD-OCT confirmed a progressive thinning of the photoreceptor cell layer leading to the disappearance of the outer retina by 6 months with additional morphological changes in the inner retinal cell layers in hemizygous P23H-1 rats. These results provide precise genotypic information of the P23H-1 rat with additional phenotypic characterization that will serve basis for therapeutic interventions, especially for those aiming at gene editing.


Assuntos
Retinose Pigmentar/genética , Rodopsina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Visão de Cores , Modelos Animais de Doenças , Eletrorretinografia , Dosagem de Genes , Hemizigoto , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Ratos Sprague-Dawley , Ratos Transgênicos , Retina/patologia , Rodopsina/química , Análise de Sequência de DNA , Tomografia de Coerência Óptica , Transgenes
15.
Mol Neurobiol ; 52(1): 679-95, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25270370

RESUMO

Rhodopsin is a G protein-coupled receptor essential for vision and rod photoreceptor viability. Disease-associated rhodopsin mutations, such as P23H rhodopsin, cause rhodopsin protein misfolding and trigger endoplasmic reticulum (ER) stress, activating the unfolded protein response (UPR). The pathophysiologic effects of ER stress and UPR activation on photoreceptors are unclear. Here, by examining P23H rhodopsin knock-in mice, we found that the UPR inositol-requiring enzyme 1 (IRE1) signaling pathway is strongly activated in misfolded rhodopsin-expressing photoreceptors. IRE1 significantly upregulated ER-associated protein degradation (ERAD), triggering pronounced P23H rhodopsin degradation. Rhodopsin protein loss occurred as soon as photoreceptors developed, preceding photoreceptor cell death. By contrast, IRE1 activation did not affect JNK signaling or rhodopsin mRNA levels. Interestingly, pro-apoptotic signaling from the PERK UPR pathway was also not induced. Our findings reveal that an early and significant pathophysiologic effect of ER stress in photoreceptors is the highly efficient elimination of misfolded rhodopsin protein. We propose that early disruption of rhodopsin protein homeostasis in photoreceptors could contribute to retinal degeneration.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Rodopsina/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Estresse do Retículo Endoplasmático , Técnicas de Introdução de Genes , Imunoprecipitação , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Proteólise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retina/metabolismo , Retina/patologia , Retina/ultraestrutura , Segmento Interno das Células Fotorreceptoras da Retina/metabolismo , Segmento Interno das Células Fotorreceptoras da Retina/patologia , Segmento Interno das Células Fotorreceptoras da Retina/ultraestrutura , Rodopsina/genética , Transdução de Sinais , Fator de Transcrição CHOP/metabolismo , Ubiquitinação
16.
Adv Exp Med Biol ; 801: 585-92, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24664747

RESUMO

Rhodopsin mutations cause many types of heritable retinitis pigmentosa (RP). Biochemical and in vitro studies have demonstrated that many RP-linked mutant rhodopsins produce misfolded rhodopsin proteins, which are prone to aggregation and retention within the endoplasmic reticulum, where they cause endoplasmic reticulum stress and activate the Unfolded Protein Response signaling pathways. Many vertebrate models of retinal degeneration have been created through expression of RP-linked rhodopsins in photoreceptors including, but not limited to, VPP/GHL mice, P23H Rhodopsin frogs, P23H rhodopsin rats, S334ter rhodopsin rats, C185R rhodopsin mice, T17M rhodopsin mice, and P23H rhodopsin mice. These models have provided many opportunities to test therapeutic strategies to prevent retinal degeneration and also enabled in vivo investigation of cellular and molecular mechanisms responsible for photoreceptor cell death. Here, we examine and compare the contribution of endoplasmic reticulum stress to retinal degeneration in several vertebrate models of RP generated through expression of mutant rhodopsins.


Assuntos
Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/fisiologia , Degeneração Retiniana/genética , Degeneração Retiniana/fisiopatologia , Rodopsina/genética , Animais , Humanos , Camundongos , Camundongos Transgênicos , Ratos , Ratos Transgênicos , Especificidade da Espécie , Resposta a Proteínas não Dobradas/fisiologia , Vertebrados , Xenopus laevis
17.
Mol Biol Cell ; 25(9): 1411-20, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24623724

RESUMO

Endoplasmic reticulum (ER) protein misfolding activates the unfolded protein response (UPR) to help cells cope with ER stress. If ER homeostasis is not restored, UPR promotes cell death. The mechanisms of UPR-mediated cell death are poorly understood. The PKR-like endoplasmic reticulum kinase (PERK) arm of the UPR is implicated in ER stress-induced cell death, in part through up-regulation of proapoptotic CCAAT/enhancer binding protein homologous protein (CHOP). Chop((-)/(-)) cells are partially resistant to ER stress-induced cell death, and CHOP overexpression alone does not induce cell death. These findings suggest that additional mechanisms regulate cell death downstream of PERK. Here we find dramatic suppression of antiapoptosis XIAP proteins in response to chronic ER stress. We find that PERK down-regulates XIAP synthesis through eIF2α and promotes XIAP degradation through ATF4. Of interest, PERK's down-regulation of XIAP occurs independently of CHOP activity. Loss of XIAP leads to increased cell death, whereas XIAP overexpression significantly enhances resistance to ER stress-induced cell death, even in the absence of CHOP. Our findings define a novel signaling circuit between PERK and XIAP that operates in parallel with PERK to CHOP induction to influence cell survival during ER stress. We propose a "two-hit" model of ER stress-induced cell death involving concomitant CHOP up-regulation and XIAP down-regulation both induced by PERK.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Apoptose , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Resposta a Proteínas não Dobradas , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação para Baixo , Células HEK293 , Humanos , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Proteólise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição CHOP/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , eIF-2 Quinase/metabolismo
18.
PLoS One ; 8(2): e56026, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23409115

RESUMO

Huntington disease (HD) is an inherited neurodegenerative disease that affects multiple brain regions. It is caused by an expanded polyglutamine tract in huntingtin (Htt). The development of therapies for HD and other neurodegenerative diseases has been hampered by multiple factors, including the lack of clear therapeutic targets, and the cost and complexity of testing lead compounds in vivo. The R6/2 HD mouse model is widely used for pre-clinical trials because of its progressive and robust neural dysfunction, which includes retinal degeneration. Profilin-1 is a Htt binding protein that inhibits Htt aggregation. Its binding to Htt is regulated by the rho-associated kinase (ROCK), which phosphorylates profilin at Ser-137. ROCK is thus a therapeutic target in HD. The ROCK inhibitor Y-27632 reduces Htt toxicity in fly and mouse models. Here we characterized the progressive retinopathy of R6/2 mice between 6-19 weeks of age to determine an optimal treatment window. We then tested a clinically approved ROCK inhibitor, HA-1077, administered intravitreally via liposome-mediated drug delivery. HA-1077 increased photopic and flicker ERG response amplitudes in R6/2 mice, but not in wild-type littermate controls. By targeting ROCK with a new inhibitor, and testing its effects in a novel in vivo model, these results validate the in vivo efficacy of a therapeutic candidate, and establish the feasibility of using the retina as a readout for CNS function in models of neurodegenerative disease.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Doença de Huntington/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Retina/efeitos dos fármacos , Retina/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/administração & dosagem , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Modelos Animais de Doenças , Eletrorretinografia , Feminino , Expressão Gênica , Proteína Huntingtina , Doença de Huntington/genética , Lipossomos , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosforilação/efeitos dos fármacos , Profilinas/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Retina/patologia , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/metabolismo
19.
PLoS One ; 8(12): e83974, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391855

RESUMO

Melanopsin-expressing retinal ganglion cells (mRGCs) in the eye play an important role in many light-activated non-image-forming functions including neonatal photoaversion and the adult pupillary light reflex (PLR). MRGCs rely on glutamate and possibly PACAP (pituitary adenylate cyclase-activating polypeptide) to relay visual signals to the brain. However, the role of these neurotransmitters for individual non-image-forming responses remains poorly understood. To clarify the role of glutamatergic signaling from mRGCs in neonatal aversion to light and in adult PLR, we conditionally deleted vesicular glutamate transporter (VGLUT2) selectively from mRGCs in mice. We found that deletion of VGLUT2 in mRGCs abolished negative phototaxis and light-induced distress vocalizations in neonatal mice, underscoring a necessary role for glutamatergic signaling. In adult mice, loss of VGLUT2 in mRGCs resulted in a slow and an incomplete PLR. We conclude that glutamatergic neurotransmission from mRGCs is required for neonatal photoaversion but is complemented by another non-glutamatergic signaling mechanism for the pupillary light reflex in adult mice. We speculate that this complementary signaling might be due to PACAP neurotransmission from mRGCs.


Assuntos
Luz , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Reflexo Pupilar/fisiologia , Células Ganglionares da Retina/metabolismo , Opsinas de Bastonetes/fisiologia , Transmissão Sináptica/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/fisiologia , Animais , Animais Recém-Nascidos , Comportamento Animal , Feminino , Técnicas Imunoenzimáticas , Integrases/metabolismo , Transdução de Sinal Luminoso , Masculino , Camundongos , Camundongos Knockout , Neurotransmissores/metabolismo , Estimulação Luminosa , Reflexo Pupilar/efeitos da radiação , Células Ganglionares da Retina/efeitos da radiação , Transtornos da Visão , Visão Ocular/fisiologia , Visão Ocular/efeitos da radiação
20.
Exp Eye Res ; 104: 65-73, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23036564

RESUMO

The aim of this study was to examine the temporal relationship between behaviorally measured visual thresholds, photoreceptor degeneration and dysfunction, synaptic and neuronal morphology changes in the retina in the S334ter line 4 rat. Specifically, we examined the optokinetic tracking (OKT) behavior in S334ter rats daily and found that OKT thresholds reflected normal values at eye opening but quickly reduced to a non-response level by postnatal day (P) 22. By contrast, the scotopic electroretinogram (ERG) showed a much slower degeneration, with substantial scotopic function remaining after P90 as previously demonstrated for this line of rats. Photopic b-wave amplitudes revealed functional levels between 70 and 100% of normal between P30 and P90. Histological evidence demonstrated that photoreceptor degeneration occurred over many months, with an outer nuclear layer (ONL) roughly half the thickness of a normal age-matched control at P90. Immunohistochemical analysis revealed a number of changes in retinal morphology in the Tg S334ter line 4 rat that occur at or before P40 including: elevated levels of rod opsin expression in the ONL, cone photoreceptor morphology changes, glial cell activation, inner retinal neuron sprouting, and microglial cell activation. Many of these changes were evident at P30 and in some cases as early as eye opening (P15). Thus, the morphological changes occurred in concert with or before the very rapid loss of the behavioral (OKT) responses, and significantly before the loss of photoreceptors and photoreceptor function.


Assuntos
Mutação , Nistagmo Optocinético/fisiologia , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/fisiopatologia , Rodopsina/genética , Animais , Biomarcadores/metabolismo , Sobrevivência Celular , Eletrorretinografia , Técnica Indireta de Fluorescência para Anticorpo , Microscopia Confocal , Neuroglia/metabolismo , Neuroglia/patologia , Células Fotorreceptoras de Vertebrados/metabolismo , Ratos , Ratos Long-Evans , Ratos Transgênicos , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Limiar Sensorial/fisiologia , Percepção Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA