Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 102(3-1): 033105, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33075904

RESUMO

We investigate the forcing strength needed to sustain a flow using linear forcing. A critical Reynolds number R_{c} is determined, based on the longest wavelength allowed by the system, the forcing strength and the viscosity. A simple model is proposed for the dissipation rate, leading to a closed expression for the kinetic energy of the flow as a function of the Reynolds number. The dissipation model and the prediction for the kinetic energy are assessed using direct numerical simulations and two-point closure integrations. An analysis of the dissipation-rate equation and the triadic structure of the nonlinear transfer allows to refine the model in order to reproduce the low-Reynolds-number asymptotic behavior, where the kinetic energy is proportional to R-R_{c}.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...