Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
RSC Adv ; 10(58): 35017-35030, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35515691

RESUMO

2',3-Dihydroxyflavone (2'3HF) is a natural flavonol that has barely ever been studied, however the scarce studies of its physico-chemical properties have highlighted its atypical behaviour. We present a structural and spectral study of 2'3HF, performed using UV-visible absorption and fluorescence spectroscopies, coupled with DFT and TD-DFT calculations. Although its structure is close to that of 3-hydroxyflavone, 2'3HF shows a much lower pK a value. We show that the origin of this particularity is the substitution by a hydroxyl group on position 2', that induces a stronger inter-ring interaction weakening the bonding of the proton at position 3. The main absorption band of the is red-shifted upon deprotonation. The remaining proton is highly bonded in between oxygen atoms 3 and 2', making the second deprotonation unattainable in methanol. The neutral form can undergo an excited-state intramolecular proton transfer to emit dual fluorescence by the normal and tautomer forms. We suggested five geometries to be the sources of the emission bands, and showed that the energy barriers to interconversions were almost null. The anion is also fluorescent. The Stokes shifts for the neutral normal and anion species are extremely high, that can be explained by the conformational rearrangement, as the species go from twisted in the ground-state, to planar in the excited-state. Finally, another emission band is evidenced when exciting in the vicinity of the absorption maximum of the anion species in acidic medium. We suggest an aggregate with the solvent to be the origin of the emission.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 225: 117492, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31487563

RESUMO

Morin (2-(2,4-dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one) is an abundant flavonoid with various pharmacological and biological activities. Considering the ubiquitous presence of calcium cations in biological systems, it seems relevant to study the interaction of this ion with morin and the influence of pH on this system. In a first step, among the four hypothetical chelation sites, the preferential fixing site, its protonation state and the Ca environment have been determined by combining electronic spectroscopies and density functional theory (DFT) and time-dependent DFT calculations. Then, using the same methodology, the fate of the formed complex with the variation of pH was studied. Calcium chelation occurs with the 3-hydroxy-4-keto site with deprotonation of the hydroxyl group. The coordination number of CaII does not seem to be a determining parameter insofar whatever the number of solvent molecules present in the coordination sphere of the metal, the calculation of the electronic transitions leads to the same results. With the increase in pH, a first deprotonation of the complex occurs at the level of a solvent molecule in the metal coordination sphere, followed by a deprotonation of the hydroxyl function in position 7.


Assuntos
Flavonoides/química , Antioxidantes/química , Sítios de Ligação , Cálcio/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Fenômenos Ópticos , Teoria Quântica , Soluções , Espectrometria de Fluorescência , Análise Espectral , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...