Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(5)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269510

RESUMO

Acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are characterized by genomic instability, which may arise from the global hypomethylation of the DNA. The active DNA demethylation process may be linked with aberrant methylation and can be involved in leukemogenesis. The levels of 5-methylcytosine oxidation products were analyzed in minimally invasive material: the cellular DNA from peripheral blood cells and urine of patients with AML and MDS along with the control group, using isotope-dilution two-dimensional ultra-performance liquid chromatography with tandem mass spectrometry. The receiver operating characteristic curve analysis was used for the assessment of the ability to discriminate patients' groups from the control group, and AML from MDS. The most diagnostically useful for discriminating AML patients from the control group was the urinary excretion of 5-hydroxymethylcytosine (AUC = 0.918, sensitivity: 85%, and specificity: 97%), and 5-(hydroxymethyl)-2'-deoxyuridine (0.873, 74%, and 92%), while for MDS patients 5-(hydroxymethyl)-2'-deoxycytidine in DNA (0.905, 82%, and 98%) and urinary 5-hydroxymethylcytosine (0.746, 66%, and 92%). Multi-factor models of classification trees allowed the correct classification of patients with AML and MDS in 95.7% and 94.7% of cases. The highest prognostic value of the analyzed parameters in predicting the transformation of MDS into AML was observed for 5-carboxy-2'-deoxycytidine (0.823, 80%, and 97%) and 5-(hydroxymethyl)-2'-deoxyuridine (0.872, 100%, and 75%) in DNA. The presented research proves that the intermediates of the active DNA demethylation pathway determined in the completely non-invasive (urine) or minimally invasive (blood) material can be useful in supporting the diagnostic process of patients with MDS and AML. The possibility of an early identification of a group of MDS patients with an increased risk of transformation into AML is of particular importance.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , DNA/metabolismo , Desmetilação do DNA , Desoxicitidina , Desoxiuridina/metabolismo , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/diagnóstico , Prognóstico
2.
Sci Rep ; 11(1): 21345, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725426

RESUMO

The active DNA demethylation process may be linked to aberrant methylation and may be involved in leukemogenesis. We investigated the role of epigenetic DNA modifications in childhood acute lymphoblastic leukemia (ALL) diagnostics and therapy monitoring. We analyzed the levels of 5-methyl-2'-deoxycytidine (5-mdC) oxidation products in the cellular DNA and urine of children with ALL (at diagnosis and during chemotherapy, n = 55) using two-dimensional ultra-performance liquid chromatography with tandem mass spectrometry (2D UPLC-MS/MS). Moreover, the expression of Ten Eleven Translocation enzymes (TETs) at the mRNA and protein levels was determined. Additionally, the ascorbate level in the blood plasma was analyzed. Before treatment, the ALL patients had profoundly higher levels of the analyzed modified DNA in their urine than the controls. After chemotherapy, we observed a statistically significant decrease in active demethylation products in urine, with a final level similar to the level characteristic of healthy children. The level of 5-hmdC in the DNA of the leukocytes in blood of the patient group was significantly lower than that of the control group. Our data suggest that urinary excretion of epigenetic DNA modification may be a marker of pediatric ALL status and a reliable marker of chemotherapy response.


Assuntos
Biomarcadores Tumorais/genética , DNA/genética , Epigênese Genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Adolescente , Biomarcadores Tumorais/urina , Criança , Pré-Escolar , DNA/urina , Metilação de DNA , Feminino , Humanos , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/urina
3.
Methods Mol Biol ; 2198: 269-284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32822038

RESUMO

5-hydroxymethyluracil was originally identified as an oxidatively modified DNA base derivative. Recent evidence suggests that its formation may result from the oxidation of thymine in a reaction that is catalyzed by TET proteins. Alternatively, it could be generated through the deamination of 5-hydroxymethylcytosine by activation-induced cytidine deaminase. The standard method for evaluating 5-hydroxymethyluracil content is the highly sensitive and highly specific isotope-dilution automated online two-dimensional ultraperformance liquid chromatography with tandem mass spectrometry (2D-UPLC-MS/MS). Despite many advantages, this method has one great limitation. It is not able to measure compounds at a single-cell level. Our goal was to develop and optimize a method based on flow cytometry that allows the evaluation of 5-hydroxymethyluracil levels at a single cell level in peripheral leukocytes.


Assuntos
Citometria de Fluxo/métodos , Pentoxil (Uracila)/análogos & derivados , Análise de Célula Única/métodos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/análise , 5-Metilcitosina/sangue , Cromatografia Líquida , Citosina/metabolismo , DNA/genética , Metilação de DNA/fisiologia , Epigênese Genética/fisiologia , Humanos , Oxirredução , Pentoxil (Uracila)/análise , Pentoxil (Uracila)/sangue , Pentoxil (Uracila)/metabolismo , Espectrometria de Massas em Tandem , Timina/metabolismo
4.
J Transl Med ; 16(1): 204, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30029654

RESUMO

BACKGROUND: A characteristic feature of malignant cells, such as colorectal cancer cells, is a profound decrease in the level of 5-hydroxymethylcytosine, a product of 5-methylcytosine oxidation by TET enzymes. Recent studies showed that ascorbate may upregulate the activity of TET enzymes in cultured cells and enhance formation of their products in genomic DNA. METHODS: The study included four groups of subjects: healthy controls (n = 79), patients with inflammatory bowel disease (IBD, n = 51), adenomatous polyps (n = 67) and colorectal cancer (n = 136). The list of analyzed parameters included (i) leukocyte levels of epigenetic DNA modifications and 8-oxo-7,8-dihydro-2'-deoxyguanosine, a marker of oxidatively modified DNA, determined by means of isotope-dilution automated online two-dimensional ultra-performance liquid chromatography with tandem mass spectrometry, (ii) expression of TET mRNA measured with RT-qPCR, and (iii) chromatographically-determined plasma concentrations of retinol, alpha-tocopherol and ascorbate. RESULTS: Patients from all groups presented with significantly lower levels of 5-methylcytosine and 5-hydroxymethylcytosine in DNA than the controls. A similar tendency was also observed for 5-hydroxymethyluracil level. Patients with IBD showed the highest levels of 5-formylcytosine and 8-oxo-7,8-dihydro-2'-deoxyguanosine of all study subjects, and individuals with colorectal cancer presented with the lowest concentrations of ascorbate and retinol. A positive correlation was observed between plasma concentration of ascorbate and levels of two epigenetic modifications, 5-hydroxymethylcytosine and 5-hydroxymethyluracil in leukocyte DNA. Moreover, a significant difference was found in the levels of these modifications in patients whose plasma concentrations of ascorbate were below the lower and above the upper quartile for the control group. CONCLUSIONS: These findings suggest that deficiency of ascorbate in the blood may be a marker of its shortage in other tissues, which in turn may correspond to deterioration of DNA methylation-demethylation. These observations may provide a rationale for further research on blood biomarkers of colorectal cancer development.


Assuntos
Adenoma/genética , Ácido Ascórbico/farmacologia , Neoplasias Colorretais/genética , DNA/genética , Epigênese Genética/efeitos dos fármacos , Doenças Inflamatórias Intestinais/genética , Leucócitos/metabolismo , Adenoma/sangue , Adenoma/patologia , Idoso , Ácido Ascórbico/sangue , Estudos de Casos e Controles , Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Feminino , Humanos , Doenças Inflamatórias Intestinais/sangue , Doenças Inflamatórias Intestinais/patologia , Leucócitos/efeitos dos fármacos , Masculino , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vitamina A/sangue , alfa-Tocoferol/sangue
5.
Clin Epigenetics ; 10: 72, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29875879

RESUMO

Background: Active demethylation of 5-methyl-2'-deoxycytidine (5-mdC) in DNA occurs by oxidation to 5-(hydroxymethyl)-2'-deoxycytidine (5-hmdC) and further oxidation to 5-formyl-2'-deoxycytidine (5-fdC) and 5-carboxy-2'-deoxycytidine (5-cadC), and is carried out by enzymes of the ten-eleven translocation family (TETs 1, 2, 3). Decreased level of epigenetic DNA modifications in cancer tissue may be a consequence of reduced activity/expression of TET proteins. To determine the role of epigenetic DNA modifications in colon cancer development, we analyzed their levels in normal colon and various colonic pathologies. Moreover, we determined the expressions of TETs at mRNA and protein level.The study included material from patients with inflammatory bowel disease (IBD), benign polyps (AD), and colorectal cancer (CRC). The levels of epigenetic DNA modifications and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in examined tissues were determined by means of isotope-dilution automated online two-dimensional ultraperformance liquid chromatography with tandem mass spectrometry (2D-UPLC-MS/MS). The expressions of TET mRNA were measured with RT-qPCR, and the expressions of TET proteins were determined immunohistochemically. Results: IBD was characterized by the highest level of 8-oxodG among all analyzed tissues, as well as by a decrease in 5-hmdC and 5-mdC levels (at a midrange between normal colon and CRC). AD had the lowest levels of 5-hmdC and 5-mdC of all examined tissues and showed an increase in 8-oxodG and 5-(hydroxymethyl)-2'-deoxyuridine (5-hmdU) levels. CRC was characterized by lower levels of 5-hmdC and 5-mdC, the lowest level of 5-fdC among all analyzed tissues, and relatively high content of 5-cadC. The expression of TET1 mRNA in CRC and AD was significantly weaker than in IBD and normal colon. Furthermore, CRC and AD showed significantly lower levels of TET2 and AID mRNA than normal colonic tissue. Conclusions: Our findings suggest that a complex relationship between aberrant pattern of DNA epigenetic modification and cancer development does not depend solely on the transcriptional status of TET proteins, but also on the characteristics of premalignant/malignant cells. This study showed for the first time that the examined colonic pathologies had their unique epigenetic marks, distinguishing them from each other, as well as from normal colonic tissue. A decrease in 5-fdC level may be a characteristic feature of largely undifferentiated cancer cells.


Assuntos
Neoplasias do Colo/genética , Pólipos do Colo/genética , Citidina Desaminase/genética , Doenças Inflamatórias Intestinais/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Idoso , Neoplasias do Colo/metabolismo , Pólipos do Colo/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Regulação para Baixo , Epigênese Genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Pessoa de Meia-Idade , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Análise Serial de Tecidos
7.
PLoS One ; 12(11): e0188856, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29190698

RESUMO

Active demethylation of 5-methylcytosine moiety in DNA occurs by its sequential oxidation to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxycytosine, catalysed by enzymes of the Ten-Eleven Translocation family proteins (TETs 1, 2 and 3). Here we analyzed for the first time all the intermediate products of DNA demethylation pathway in the form of deoxynucleosides (5-methyl-2'-deoxycytidine, 5-(hydroxymethyl)-2'-deoxycytidine, 5-formyl-2'-deoxycytidine and 5-carboxy-2'-deoxycytidine as well as 5-(hydroxymethyl)-2'-deoxyuridine) using automated isotope-dilution online two-dimensional ultra-performance liquid chromatography with tandem mass spectrometry. DNA was isolated from human malignant cell lines of colon adenocarcinoma (HCT 116), melanoma (Me45), myelogenous leukemia bone marrow blasts (K562), EBV-positive Burkitt's lymphoma lymphoblasts (Raji), EBV-negative Burkitt's lymphoma lymphoblasts (male-CA46 and female-ST486), as well as normal neonatal dermal fibroblasts (NHDF-Neo). The expression levels of TET1, TET2, TET3, SMUG1, and TDG genes were also assayed by RT-qPCR. Our results show a global erasure of 5-hydroxymethyl-2'-deoxycytidine and 5-carboxy-2'-deoxycytidine in DNA of cultured cells compared with DNA from primary malignant tissue. Moreover, malignant cells in culture have a quite different DNA epigenetic profile than cultured normal cells, and different types of malignant cells display different and characteristic profiles of DNA epigenetic marks. Similar analyses of a broader spectrum of epigenetic modifications, not restricted to 5-methyl-2'-deoxycytidine, could lead to better understanding of the mechanism(s) responsible for emergence of different types of cancer cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , DNA/genética , Desoxicitidina/análogos & derivados , Epigênese Genética , Linhagem Celular Tumoral , Cromatografia Líquida , Citosina/análise , DNA/química , Desoxicitidina/farmacologia , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem , Timina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...