Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biometrika ; 102(1): 151-168, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25937641

RESUMO

Individualized treatment rules recommend treatments based on individual patient characteristics in order to maximize clinical benefit. When the clinical outcome of interest is survival time, estimation is often complicated by censoring. We develop nonparametric methods for estimating an optimal individualized treatment rule in the presence of censored data. To adjust for censoring, we propose a doubly robust estimator which requires correct specification of either the censoring model or survival model, but not both; the method is shown to be Fisher consistent when either model is correct. Furthermore, we establish the convergence rate of the expected survival under the estimated optimal individualized treatment rule to the expected survival under the optimal individualized treatment rule. We illustrate the proposed methods using simulation study and data from a Phase III clinical trial on non-small cell lung cancer.

3.
Biometrika ; 102(3): 501-514, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26893526

RESUMO

Individualized treatment rules recommend treatments on the basis of individual patient characteristics. A high-quality treatment rule can produce better patient outcomes, lower costs and less treatment burden. If a treatment rule learned from data is to be used to inform clinical practice or provide scientific insight, it is crucial that it be interpretable; clinicians may be unwilling to implement models they do not understand, and black-box models may not be useful for guiding future research. The canonical example of an interpretable prediction model is a decision tree. We propose a method for estimating an optimal individualized treatment rule within the class of rules that are representable as decision trees. The class of rules we consider is interpretable but expressive. A novel feature of this problem is that the learning task is unsupervised, as the optimal treatment for each patient is unknown and must be estimated. The proposed method applies to both categorical and continuous treatments and produces favourable marginal mean outcomes in simulation experiments. We illustrate it using data from a study of major depressive disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...