Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 22(3): 466-475, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27240530

RESUMO

Anxiety disorders constitute a major disease and social burden worldwide; however, many questions concerning the underlying molecular mechanisms still remain open. Besides the involvement of the major excitatory (glutamate) and inhibitory (gamma aminobutyric acid (GABA)) neurotransmitter circuits in anxiety disorders, the stress system has been directly implicated in the pathophysiology of these complex mental illnesses. The glucocorticoid receptor (GR) is the major receptor for the stress hormone cortisol (corticosterone in rodents) and is widely expressed in excitatory and inhibitory neurons, as well as in glial cells. However, currently it is unknown which of these cell populations mediate GR actions that eventually regulate fear- and anxiety-related behaviors. In order to address this question, we generated mice lacking the receptor specifically in forebrain glutamatergic or GABAergic neurons by breeding GRflox/flox mice to Nex-Cre or Dlx5/6-Cre mice, respectively. GR deletion specifically in glutamatergic, but not in GABAergic, neurons induced hypothalamic-pituitary-adrenal axis hyperactivity and reduced fear- and anxiety-related behavior. This was paralleled by reduced GR-dependent electrophysiological responses in the basolateral amygdala (BLA). Importantly, viral-mediated GR deletion additionally showed that fear expression, but not anxiety, is regulated by GRs in glutamatergic neurons of the BLA. This suggests that pathological anxiety likely results from altered GR signaling in glutamatergic circuits of several forebrain regions, while modulation of fear-related behavior can largely be ascribed to GR signaling in glutamatergic neurons of the BLA. Collectively, our results reveal a major contribution of GRs in the brain's key excitatory, but not inhibitory, neurotransmitter system in the regulation of fear and anxiety behaviors, which is crucial to our understanding of the molecular mechanisms underlying anxiety disorders.


Assuntos
Transtornos de Ansiedade/fisiopatologia , Receptores de Glucocorticoides/metabolismo , Receptores de Glutamato/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/fisiopatologia , Complexo Nuclear Basolateral da Amígdala/metabolismo , Corticosterona/metabolismo , Fármacos Atuantes sobre Aminoácidos Excitatórios/metabolismo , Medo/fisiologia , GABAérgicos/metabolismo , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Prosencéfalo/metabolismo , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo
2.
Stress ; 19(1): 83-90, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26585320

RESUMO

Major depression is a multifactorial disease, involving both environmental and genetic risk factors. Recently, SLC6A15 - a neutral amino acid transporter mainly expressed in neurons - was proposed as a new candidate gene for major depression and stress vulnerability. Risk allele carriers for a single nucleotide polymorphism (SNP) in a SLC6A15 regulatory region display altered hippocampal volume, glutamate levels, and hypothalamus-pituitary-adrenal axis activity, all markers associated with major depression. Despite this genetic link between SLC6A15 and depression, its functional role with regard to the development and maintenance of depressive disorder is still unclear. The aim of the current study was therefore to characterize the role of mouse slc6a15 in modulating brain function and behavior, especially in relation to stress as a key risk factor for the development of mood disorders. We investigated the effects of slc6a15 manipulation using two mouse models, a conventional slc6a15 knock-out mouse line (SLC-KO) and a virus-mediated hippocampal slc6a15 overexpression (SLC-OE) model. Mice were tested under basal conditions and following chronic social stress. We found that SLC-KO animals displayed a similar behavioral profile to wild-type littermates (SLC-WT) under basal conditions. Interestingly, following chronic social stress SLC-KO animals showed lower levels of anxiety- and depressive-like behavior compared to stressed WT littermates. In support of these findings, SLC-OE animals displayed increased anxiety-like behavior already under basal condition. We also provide evidence that GluR1 expression in the dentate gyrus, but not GluR2 or NR1, are regulated by slc6a15 expression, and may contribute to the difference in stress responsiveness observed between SLC-KO and SLC-WT animals. Taken together, our data demonstrate that slc6a15 plays a role in modulating emotional behavior, possibly mediated by its impact on glutamatergic neurotransmission.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Ansiedade/genética , Comportamento Animal , Depressão/genética , Hipocampo/metabolismo , RNA Mensageiro/metabolismo , Estresse Psicológico/genética , Alelos , Animais , Corticosterona/sangue , Giro Denteado/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Genótipo , Masculino , Camundongos , Camundongos Knockout , Transtornos do Humor/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Receptores de AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Fatores de Risco , Estresse Psicológico/metabolismo
3.
Transl Psychiatry ; 4: e481, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25386958

RESUMO

Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has fast-acting antidepressant activities and is used for major depressive disorder (MDD) patients who show treatment resistance towards drugs of the selective serotonin reuptake inhibitor (SSRI) type. In order to better understand Ketamine's mode of action, a prerequisite for improved drug development efforts, a detailed understanding of the molecular events elicited by the drug is mandatory. In the present study we have carried out a time-dependent hippocampal metabolite profiling analysis of mice treated with Ketamine. After a single injection of Ketamine, our metabolomics data indicate time-dependent metabolite level alterations starting already after 2 h reflecting the fast antidepressant effect of the drug. In silico pathway analyses revealed that several hippocampal pathways including glycolysis/gluconeogenesis, pentose phosphate pathway and citrate cycle are affected, apparent by changes not only in metabolite levels but also connected metabolite level ratios. The results show that a single injection of Ketamine has an impact on the major energy metabolism pathways. Furthermore, seven of the identified metabolites qualify as biomarkers for the Ketamine drug response.


Assuntos
Comportamento Animal/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ketamina/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ketamina/administração & dosagem , Ketamina/farmacologia , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...