Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Dev Sustain ; 23(6): 9418-9432, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33071605

RESUMO

Amid COVID-19, there have been rampant increase in the use of Personal Protective Equipment (PPE) kits by frontline health and sanitation communities, to reduce the likelihoods of infections. The used PPE kits, potentially being infectious, pose a threat to human health, terrestrial, and marine ecosystems, if not scientifically handled and disposed. However, with stressed resources on treatment facilities and lack of training to the health and sanitation workers, it becomes vital to vet different options for PPE kits disposal, to promote environmentally sound management of waste. Given the various technology options available for treatment and disposal of COVID-19 patients waste, Life Cycle Assessment, i.e., cradle to grave analysis of PPE provides essential guidance in identifying the environmentally sound alternatives. In the present work, Life Cycle Assessment of PPE kits has been performed using GaBi version 8.7 under two disposal scenarios, namely landfill and incineration (both centralized and decentralized) for six environmental impact categories covering overall impacts on both terrestrial and marine ecosystems, which includes Global Warming Potential (GWP), Human Toxicity Potential (HTP), Eutrophication Potential (EP), Acidification Potential (AP), Freshwater Aquatic Ecotoxicity Potential (FAETP) and Photochemical Ozone Depletion Potential (POCP). Considering the inventories of PPE kits, disposal of PPE bodysuit has the maximum impact, followed by gloves and goggles, in terms of GWP. The use of metal strips in face-mask has shown the most significant HTP impact. The incineration process (centralized-3816 kg CO2 eq. and decentralized-3813 kg CO2 eq.) showed high GWP but significantly reduced impact w.r.t. AP, EP, FAETP, POCP and HTP, when compared to disposal in a landfill, resulting in the high overall impact of landfill disposal compared to incineration. The decentralized incineration has emerged as environmentally sound management option compared to centralized incinerator among all the impact categories, also the environmental impact by transportation is significant (2.76 kg CO2 eq.) and cannot be neglected for long-distance transportation. Present findings can help the regulatory authority to delineate action steps for safe disposal of PPE kits.

3.
Environ Sci Pollut Res Int ; 28(10): 12740-12752, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33090342

RESUMO

Exposure to indoor air pollutants released from traditional cookstoves in rural Indian households is a matter of great concern. While there are various studies over several decades focused towards intervention strategies for reducing air pollutants, limited literature exists towards the identification of appropriate methodology for feasible intervention, adoption and usage of improved cookstoves (ICS). In the present study, PM2.5 and CO microenvironment concentrations are estimated in households using traditional and improved cookstove (NEERDHUR). The reduction in PM2.5 and CO microenvironment concentrations after the introduction of ICS was found to be 89-94% and 35-57%, respectively. Information-education-communication (IEC) activity was used as a tool to increase the adoption and usage rate in the ICS using households. The cost-benefit analysis was also performed to check the benefits of ICS use, and the benefit-cost ratio was found to be 3 to 4 times. Findings of the study suggest that, although the ICS intervention could significantly improve the indoor air quality, however, it fails to comply with the permissible safe limits; further focus on greener fuels and ventilation characteristics is suggested. The outcomes from the study can help decision-makers, corporate social responsibility fund mobilizers and policymakers for effective policy advocacy to design efforts by promoting clean cooking interventions and linking and mapping these with national missions and flagship programs.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Biomassa , Culinária , Humanos , Índia , Material Particulado/análise , População Rural , Responsabilidade Social
4.
Food Chem ; 240: 131-138, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28946253

RESUMO

In the present work a fast, reliable and safe Ion Exchange Chromatography-Pulsed Amperometry Detection (IC-PAD) method for direct determination of free cyanide in drinking water has been reported. To the best of our knowledge for the first time we are reporting the application of Gold working electrode for detection of free cyanide in a chromatography system. The system shows a wide linear range up to 8000µg/L. The electrode was found to have improved sensitivity and selectivity in the presence of interfering ions. The detection limit of the system was calculated to be 2µg/L. Long term evaluation of the electrode was found to be stable. Reproducible results were obtained from analysis of drinking water samples with recoveries of 98.3-101.2% and Relative Standard Deviations (RSD) of <2%. This study proves the potential application of the newly developed method for the analysis of free cyanide in drinking water.


Assuntos
Cianetos/análise , Água Potável/química , Cromatografia por Troca Iônica , Eletrodos , Ouro
5.
Sci Technol Adv Mater ; 17(1): 760-768, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933116

RESUMO

In this study, an environmentally friendly, cost-effective, and single-step procedure is used for the synthesis of polycrystalline Cu2O particles with controlled morphologies. Simple sugars are extracted from date fruit pulp (Phoenix dactylifera) and used as a reducing agent for the formation of Cu2O particles in aqueous medium. The feasibility of this solution is compared with the standard glucose solution. The Cu2O particles are characterized by electron microscopy, X-ray diffraction, optical absorption and Raman scattering techniques. It is concluded that the morphology of the particles is mainly influenced by the solvents. The obtained Cu2O particles are then used as an adsorbent to uptake As(III) ions from water. The maximum adsorption capacity (Qmax) is estimated by Langmuir and Freundlich isotherms and it is found that Qmax = 14.3 mg g-1. Adsorption kinetics study showed that the adsorption equilibrium could be achieved in 1 h and that the purified water meets the standards of World Health Organization (WHO) for acceptable amount of As(III) in drinking water. Adsorption kinetic models showed that the adsorption is chemisorption in nature.

6.
Waste Manag ; 47(Pt A): 40-5, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26303650

RESUMO

Biomass is available in many varieties, consisting of crops as well as its residues from agriculture, forestry, and the agro-industry. These different biomass find their way as freely available fuel in rural areas but are also responsible for air pollution. Emissions from such solid fuel combustion to indoor, regional and global air pollution largely depend on fuel types, combustion device, fuel properties, fuel moisture, amount of air supply for combustion and also on climatic conditions. In both economic and environment point of view, gasification constitutes an attractive alternative for the use of biomass as a fuel, than the combustion process. A large number of studies have been reported on a variety of biomass and agriculture residues for their possible use as renewable fuels. Considering the area specific agriculture residues and biomass availability and related transportation cost, it is important to explore various local biomass for their suitability as a fuel. Maharashtra (India) is the mainstay for the agriculture and therefore, produces a significant amount of waste biomass. The aim of the present research work is to analyze different local biomass wastes for their proximate analysis and calorific value to assess their potential as fuel. The biomass explored include cotton waste, leaf, soybean waste, wheat straw, rice straw, coconut coir, forest residues, etc. mainly due to their abundance. The calorific value and the proximate analysis of the different components of the biomass helped in assessing its potential for utilization in different industries. It is observed that ash content of these biomass species is quite low, while the volatile matter content is high as compared to Indian Coal. This may be appropriate for briquetting and thus can be used as a domestic fuel in biomass based gasifier cook stoves. Utilizing these biomass species as fuel in improved cook-stove and domestic gasifier cook-stoves would be a perspective step in the rural energy and environmental sectors. This is important considering that the cleaner fuel like LPG is still not available in rural areas of many parts of the world.


Assuntos
Biocombustíveis/análise , Biomassa , Gerenciamento de Resíduos/métodos , Resíduos de Alimentos , Índia , Resíduos Sólidos/análise
7.
Nanoscale ; 7(37): 15258-67, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26324878

RESUMO

A novel in situ synthesized Ru(bpy)3/TiO2 hybrid nanocomposite is developed for the photoreduction of CO2 into methanol under visible light irradiation. The prepared composite was characterized by means of SEM, TEM, XRD, DT-TGA, XPS, UV-Vis and FT-IR techniques. The photocatalytic activity of the synthesized hybrid catalyst was tested for the photoreduction of CO2 under visible light using triethylamine as a sacrificial donor. The methanol yield for the Ru(bpy)3/TiO2 hybrid nanocomposite was found to be 1876 µmol g(-1) cat (ϕMeOH 0.024 mol Einstein(-1)) that was much higher in comparison with the in situ synthesized TiO2, 828 µmol g(-1) cat (ϕMeOH 0.010 mol Einstein(-1)) and the homogeneous Ru(bpy)3Cl2 complex, 385 µmol g(-1) cat (ϕMeOH 0.005 mol Einstein(-1)).

8.
Phys Chem Chem Phys ; 16(36): 19634-42, 2014 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-25110101

RESUMO

Chemical looping combustion (CLC) is a key technology for oxy-fuel combustion with inherent separation of CO2 from a flue gas, in which oxygen is derived from a solid oxygen carrier. Multi-cycle CLC performance and the product selectivity towards CO2 formation were achieved using mixed oxide of Cu and Mn (CuMn2O4) (Fd3[combining macron]m, a = b = c = 0.83 nm) as an oxygen carrier. CuMn2O4 was prepared by the co-precipitation method followed by annealing at 900 °C using copper(II) nitrate trihydrate and manganese(II) nitrate tetrahydrate as metal precursors. CuMn2O4 showed oxygen-desorption as well as reducibility at elevated temperatures under CLC conditions. The lattice of CuMn2O4 was altered significantly at higher temperature, however, it was reinstated virtually upon cooling in the presence of air. CuMn2O4 was reduced to CuMnO2, Mn3O4, and Cu2O phases at the intermediate stages, which were further reduced to metallic Cu and MnO upon the removal of reactive oxygen from their lattice. CuMn2O4 showed a remarkable activity towards methane combustion reaction at 750 °C. The reduced phase of CuMn2O4 containing Cu and MnO was readily reinstated when treated with air or oxygen at 750 °C, confirming efficient regeneration of the oxygen carrier. Neither methane combustion efficiency nor oxygen carrying capacity was altered with the increase of CLC cycles at any tested time. The average oxygen carrying capacity of CuMn2O4 was estimated to be 114 mg g(-1), which was not altered significantly with the repeated CLC cycles. Pure CO2 but no CO, which is one of the possible toxic by-products, was formed solely upon methane combustion reaction of CuMn2O4. CuMn2O4 shows potential as a practical CLC material both in terms of multi-cycle performance and product selectivity towards CO2 formation.

9.
J Hazard Mater ; 237-238: 161-9, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-22944591

RESUMO

A new alumina supported carbon composite material called "Eggshell Composite" (EC) was synthesized from eggshell waste as calcium source for selective fluoride adsorption from water. The effect of various synthesis parameters like eggshell (ES): Eggshell membrane (ESM) ratio, aluminium loading, mixing time and calcinations temperature to optimize the synthesis conditions for selective fluoride removal has been studied. It was observed that the synthesis parameters have significant influence on development of EC and in turn on fluoride removal capacity. EC synthesized was characterized for elemental composition, morphology, functionality and textural properties. Results showed that EC obtained from eggshell modified with alumina precursor is more selective and efficient for fluoride removal. Langmuir and Freundlich isotherm were used to obtain ultimate fluoride removal capacity. The calcium and alumina species in EC shows synergistic effect in fluoride adsorption process. Fluoride sorption studies were carried out in synthetic, groundwater and wastewater. EC proved to be a potential, indigenous and economic adsorbent for fluoride removal.


Assuntos
Óxido de Alumínio/química , Carbono/química , Casca de Ovo/química , Fluoretos/química , Poluentes Químicos da Água/química , Adsorção , Animais , Reciclagem/métodos , Restaurantes , Resíduos , Purificação da Água/métodos
10.
Nanoscale ; 4(16): 5202-9, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22751782

RESUMO

In the present investigation, hydrogen production via water splitting by nano-ferrites was studied using ethanol as the sacrificial donor and Pt as co-catalyst. Nano-ferrite is emerging as a promising photocatalyst with a hydrogen evolution rate of 8.275 µmol h(-1) and a hydrogen yield of 8275 µmol h(-1) g(-1) under visible light compared to 0.0046 µmol h(-1) for commercial iron oxide (tested under similar experimental conditions). Nano-ferrites were tested in three different photoreactor configurations. The rate of hydrogen evolution by nano-ferrite was significantly influenced by the photoreactor configuration. Altering the reactor configuration led to sevenfold (59.55 µmol h(-1)) increase in the hydrogen evolution rate. Nano-ferrites have shown remarkable stability in hydrogen production up to 30 h and the cumulative hydrogen evolution rate was observed to be 98.79 µmol h(-1). The hydrogen yield was seen to be influenced by several factors like photocatalyst dose, illumination intensity, irradiation time, sacrificial donor and presence of co-catalyst. These were then investigated in detail. It was evident from the experimental data that nano-ferrites under optimized reaction conditions and photoreactor configuration could lead to remarkable hydrogen evolution activity under visible light. Temperature had a significant role in enhancing the hydrogen yield.


Assuntos
Compostos Férricos/química , Hidrogênio/química , Nanopartículas Metálicas/química , Catálise , Óxido Ferroso-Férrico/química , Luz , Platina/química , Temperatura
12.
J Environ Sci (China) ; 24(11): 1979-84, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23534232

RESUMO

N-doped mesoporous alumina has been synthesized using chitosan as the biopolymer template. The adsorbent has been thoroughly investigated for the adsorption of CO2 from a simulated flue gas stream (15% CO2 balanced with N2) and compared with commercially available mesoporous alumina procured from SASOL, Germany. CO2 adsorption was studied under different conditions of pretreatment and adsorption temperature, inlet CO2 concentration and in the presence of oxygen and moisture. The adsorption capacity was determined to be 29.4 mg CO2/g of adsorbent at 55 degrees C. This value was observed to be 4 times higher in comparison to that of commercial mesoporous alumina at a temperature of 55 degrees C. Basicity of alumina surface coupled with the presence of nitrogen in template in synthesized sample is responsible for this enhanced CO2 adsorption. Adsorption capacity for CO2 was retained in the presence of oxygen; however moisture had a deteriorating effect on the adsorption capacity reducing it to nearly half the value.


Assuntos
Poluentes Atmosféricos/química , Óxido de Alumínio/química , Dióxido de Carbono/química , Nitrogênio/química , Adsorção , Microscopia Eletrônica de Varredura , Temperatura
13.
J Hazard Mater ; 191(1-3): 325-32, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21571425

RESUMO

Fluoride concentrations in ground water have been monitored in rural areas of Dhar and Jhabua districts in Madhya Pradesh, India. A correlation of fluoride concentration with pH, TDS and conductivity has been estimated to identify surrogate monitoring parameter. Further, fluoride removal from drinking water has been achieved by using adsorbents specially developed for domestic applications. These adsorbents have been evaluated using three different methods namely; loose adsorbent, pre-packed sachet and packed bamboo column. Comparative evaluation of these methods has been demonstrated in the laboratory and field. The stringent limit of 1mg/L for fluoride concentration in drinking water has been achieved by use of specially designed adsorbents. A feedback from end-users in Tarapur and Ukala villages of Dhar districts Madhya Pradesh regarding the adsorbents and its acceptability has been collected. User's perception regarding these household treatments reveals encouraging response for defluoridation methods. According to user's perception loose adsorbent approach emerged out as most simple, clean and safe household defluoridation method.


Assuntos
Fluoretos/isolamento & purificação , Percepção , Saúde da População Rural , Humanos , Índia , Abastecimento de Água/análise
14.
J Hazard Mater ; 186(1): 796-804, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21163572

RESUMO

Cu-Mn based mixed oxide type low-cost catalysts have been prepared in supported form using mesoporous Al(2)O(3), TiO(2) and ZrO(2) supports. These supports have been prepared by templating method using a natural biopolymer, chitosan. The synthesized catalysts have been characterized by XRD, BET-SA, SEM, O(2)-TPD and TG investigations. The catalytic activity for CO as well as PM oxidation was studied, in a view of their possible applications in the control of emissions from solid fuel combustion of rural cook-stoves. The trend observed for the catalytic activity of the synthesized catalysts for CO oxidation was ZrO(2)>TiO(2)>Al(2)O(3) while for PM oxidation it was observed to be TiO(2)>ZrO(2)>Al(2)O(3). The effect of CO(2), SO(2) and H(2)O on CO oxidation activity was also investigated, and despite partial deactivation, the catalysts show good CO oxidation activity. An effective regeneration treatment was attempted by heating the partially deactivated catalysts in presence of oxygen. Redox properties of TiO(2) and ZrO(2) and their structure appeared to be responsible for their promotional activity for CO and PM oxidation reactions. These unordered mesoporous materials could be useful for such reactions where mass transfer is more important than shape and size selectivity.


Assuntos
Poluentes Atmosféricos/análise , Monóxido de Carbono/análise , Custos e Análise de Custo , Catálise , Microscopia Eletrônica de Varredura , Oxirredução , Tamanho da Partícula , Temperatura , Difração de Raios X
15.
J Hazard Mater ; 180(1-3): 122-30, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20462694

RESUMO

Low cost bentonite clay was chemically modified using magnesium chloride in order to enhance its fluoride removal capacity. The magnesium incorporated bentonite (MB) was characterized by using XRD and SEM techniques. Batch adsorption experiments were conducted to study and optimize various operational parameters such as adsorbent dose, contact time, pH, effect of co-ions and initial fluoride concentration. It was observed that the MB works effectively over wide range of pH and showed a maximum fluoride removal capacity of 2.26 mgg(-1) at an initial fluoride concentration of 5 mg L(-1), which is much better than the unmodified bentonite. The experimental data fitted well into Langmuir adsorption isotherm and follows pseudo-first-order kinetics. Thermodynamic study suggests that fluoride adsorption on MB is reasonably spontaneous and an endothermic process. MB showed significantly high fluoride removal in synthetic water as compared to field water. Desorption study of MB suggest that almost all the loaded fluoride was desorbed ( approximately 97%) using 1M NaOH solution however maximum fluoride removal decreases from 95.47 to 73 (%) after regeneration. From the experimental results, it may be inferred that chemical modification enhances the fluoride removal efficiency of bentonite and it works as an effective adsorbent for defluoridation of water.


Assuntos
Bentonita/química , Fluoretos/isolamento & purificação , Magnésio/química , Abastecimento de Água/análise , Cinética , Termodinâmica
16.
J Colloid Interface Sci ; 332(2): 280-90, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19181328

RESUMO

In the present study, the metal-binding property of chitosan is used to incorporate titanium metal and applied as an adsorbent for fluoride adsorption. Titanium macrospheres (TM) were synthesized by a precipitation method and characterized by FTIR, SEM, and XRD. The Langmuir and Freundlich adsorption models were applied to describe the adsorption equilibrium and the adsorption capacities were calculated. Thermodynamic parameters of standard free energy change (DeltaG(o)), standard enthalpy change (DeltaH(o)), and standard entropy change (DeltaS(o)) were also calculated. The effects of various physico-chemical parameters such as pH, initial concentration, adsorbent dose, and the presence of coexisting anions were studied. The fluoride uptake was maximum at neutral pH 7 and decreased in acidic and alkaline pH. The presence of coexisting anions has a negative effect on fluoride adsorption. TM was found to have very fast kinetics in the first 30 min and then the rate slowed down as equilibrium was approached. A comparison of fluoride removal in simulated and field water shows a high adsorption capacity in simulated water.


Assuntos
Quitosana/química , Fluoretação , Purificação da Água/métodos , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Titânio
17.
J Colloid Interface Sci ; 300(1): 232-6, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16690075

RESUMO

Emanation thermal analysis (ETA), differential thermal analysis (DTA), thermogravimetry (TG), evolved gas analysis with mass spectrometric detection (EGA-MS), and X-ray diffraction (XRD) were used to investigate the formation of perovskite type lanthanum ruthenates on heating their hydroxide precursor in argon from 20 to 1200 degrees C. The co-precipitated lanthanum-ruthenium mixed hydroxide containing a small amount of carbonates was used as a precursor. The mass loss corresponding to the release of water and CO(2) from the precursor was determined by TG and EGA (MS), respectively. The ETA characterized the exposure of sample surface after release of water and CO(2), as well as microstructure development corresponding to the crystallization and structure ordering of LaRuO(3) and La(3.5)Ru(4.0)O(13) perovskite phases. The obtained information on formation of phases and their transformation is useful for optimizing their synthesis protocols for achieving the desired physical properties, and to estimate the thermal stability of these materials to be used as catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...