Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 231(Pt 3): 116280, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37257742

RESUMO

This work presents a one-step synthesis methodology for preparing a hydrochar (HC) doped with TiO2 (HC-TiO2) for its application on the degradation of crystal violet (CV) using UV and visible radiation. Byrsonima crassifolia stones were used as precursors along with TiO2 particles. The HC-TiO2 sample was synthesized at 210 °C for 9 h using autogenous pressure. The photocatalyst was characterized to evaluate the TiO2 dispersion, specific surface area, graphitization degree, and band-gap value. Finally, the degradation of CV was investigated by varying the operating conditions of the system, the reuse of the catalyst, and the degradation mechanism. The physicochemical characterization of the HC-TiO2 composite showed good dispersion of TiO2 in the carbonaceous particle. The presence of TiO2 on the hydrochar surface yields a bandgap value of 1.17 eV, enhancing photocatalyst activation with visible radiation. The degradation results evidenced a synergistic effect with both types of radiation due to the hybridized π electrons in the sp2-hybridized structures in the HC surface. The degradation percentages were on average 20% higher using UV radiation than visible radiation under the following conditions: [CV] = 20 mg/L, 1 g/L of photocatalyst load, and pH = 7.0. The reusability experiments demonstrated the feasibility of reusing the HC-TiO2 material up to 5 times with a similar photodegradation percentage. Finally, the results indicated that the HC-TiO2 composite could be considered an efficient material for the photocatalytic treatment of water contaminated with CV.


Assuntos
Violeta Genciana , Raios Ultravioleta , Luz , Titânio/química , Catálise
2.
Sci Rep ; 9(1): 5699, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952901

RESUMO

An intense photoluminescence emission was observed from noble metal nanoclusters (Pt, Ag or Au) embedded in sapphire plates, nucleated by MeV ion-implantation and assisted by an annealing process. In particular, the spectral photoluminescence characteristics, such as range and peak emission, were compared to the behavior observed from Pt nanoclusters embedded in a silica matrix and excited by UV irradiation. Correlation between emission energy, nanoclusters size and metal composition were analyzed by using the scaling energy relation EFermi/N1/3 from the spherical Jellium model. The metal nanocluster luminescent spectra were numerically simulated and correctly fitted using the bulk Fermi energy for each metal and a Gaussian nanoclusters size distribution for the samples. Our results suggest protoplasmonics photoluminescence from metal nanoclusters free of surface state or strain effects at the nanoclusters-matrix interface that can influence over their optical properties. These metal nanoclusters present very promising optical features such as bright visible photoluminescence and photostability under strong picosecond laser excitations. Besides superlinear photoluminescence from metal nanoclusters were also observed under UV high power excitation showing a quadratic dependence on the pump power fluence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...