Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613477

RESUMO

Hydrogels are intensively investigated biomaterials due to their useful physicochemical and biological properties in bioengineering. In particular, naturally occurring hydrogels are being deployed as carriers for bio-compounds. We used two approaches to develop a plate colourimetric test by immobilising (1) ABTS or (2) laccase from Trametes versicolor in the gelatine-based hydrogel. The first system (1) was applied to detect laccase in aqueous samples. We investigated the detection level of the enzyme between 0.05 and 100 µg/mL and pH ranging between 3 and 9; the stability of ABTS in the solution and the immobilised form, as well as the retention functional property of the hydrogel in 4 °C for 30 days. The test can detect laccase within 20 min in the concentration range of 2.5−100 µg/mL; is effective at pH 3−6; preserves high stability and functionality under storage and can be also successfully applied for testing samples from a microbial culture. The second system with the immobilised laccase (2) was tested in terms of substrate specificity (ABTS, syringaldazine, guaiacol) and inhibitor (NaN3) screening. ABTS appeared the most proper substrate for laccase with detection sensitivity CABTS > 0.5 mg/mL. The NaN3 tested in the range of 0.5−100 µg/mL showed a distinct inhibition effect in 20 min for 0.5 µg/mL and total inhibition for ≥75 µg/mL.


Assuntos
Lacase , Trametes , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Trametes/metabolismo , Lacase/metabolismo , Hidrogéis , Colorimetria
2.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576071

RESUMO

The presented research is focused on an investigation of the effect of the addition of polyvinyl alcohol (PVA) to a gelatin-based hydrogel on the functional properties of the resulting material. The main purpose was to experimentally determine and compare the properties of hydrogels differing from the content of PVA in the blend. Subsequently, the utility of these matrices for the production of an immobilized invertase preparation with improved operational stability was examined. We also propose a useful computational tool to predict the properties of the final material depending on the proportions of both components in order to design the feature range of the hydrogel blend desired for a strictly specified immobilization system (of enzyme/carrier type). Based on experimental research, it was found that an increase in the PVA content in gelatin hydrogels contributes to obtaining materials with a visibly higher packaging density, degree of swelling, and water absorption capacity. In the case of hydrolytic degradation and compressive strength, the opposite tendency was observed. The functionality studies of gelatin and gelatin/PVA hydrogels for enzyme immobilization indicate the very promising potential of invertase entrapped in a gelatin/PVA hydrogel matrix as a stable biocatalyst for industrial use. The molecular modeling analysis performed in this work provides qualitative information about the tendencies of the macroscopic parameters observed with the increase in the PVA and insight into the chemical nature of these dependencies.


Assuntos
Simulação por Computador , Gelatina/química , Álcool de Polivinil/química , Animais , Força Compressiva , Módulo de Elasticidade , Enzimas Imobilizadas/metabolismo , Ligação de Hidrogênio , Teste de Materiais , Modelos Moleculares , Porosidade , Suínos , Água/química
3.
Molecules ; 24(18)2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527447

RESUMO

To successfully design and optimize the application of hydrogel matrices one has to effectively combine computational design tools with experimental methods. In this context, one of the most promising techniques is molecular modeling, which requires however accurate molecular models representing the investigated material. Although this method has been successfully used over the years for predicting the properties of polymers, its application to biopolymers, including gelatin, is limited. In this paper we provide a method for creating an atomistic representation of gelatin based on the modified FASTA codes of natural collagen. We show that the model created in this manner reproduces known experimental values of gelatin properties like density, glass-rubber transition temperature, WAXS profile and isobaric thermal expansion coefficient. We also present that molecular dynamics using the INTERFACE force field provides enough accuracy to track changes of density, fractional free volume and Hansen solubility coefficient over a narrow temperature regime (273-318 K) with 1 K accuracy. Thus we depict that using molecular dynamics one can predict properties of gelatin biopolymer as an efficient matrix for immobilization of various bioactive compounds, including enzymes.


Assuntos
Gelatina/química , Modelos Moleculares , Conformação Proteica , Algoritmos , Sequência de Aminoácidos , Análise de Variância , Biopolímeros/química , Hidrogéis/química , Temperatura
4.
Bioorg Chem ; 93: 102745, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30691728

RESUMO

The major drawbacks of native lipase applications in processes occurring in water or in organic solvents include: difficulties in catalyst recycling, low activity and operational instability. The immobilization of Burkholderia cepacia lipase by adsorption or covalent binding onto 5 differently functionalized carriers (silica, acrylic, cellulose-based) was performed to overcome this problem. The optimization of the reaction preparation in water-rich media was based on the hydrolytic reactivity of the preparations, as well as the thermal, operational and storage stabilities. Aminated silica carrier, activated with glutaraldehyde, was determined to be the carrier of choice. Regarding processes in water-restricted media, carrier selection was based on reactivity after drying and five preparations were chosen for the resolution of a non-equimolar isomer mixture (85:15 ratio of R to S isomers), treating the kinetic resolution of ((+)-(S/R)-1-[(1S,5R)-6,6-dimethylbicyclo[3.1.0]hex-2-en-2-yl)]ethanol as a model. The resulting acetate of R configuration exhibits interesting sensory properties. The operational stability of the chosen catalysts was tested over 15 consecutive batch processes; the most beneficial results were obtained with lipase adsorbed on an acrylic carrier. Conversion increased gradually from 10 to 84% over the first five processes, which could be explained by the product sorption onto the carrier. Full kinetic resolution with maximal substrate conversion (approximately 84%) was achieved and remained stable during the next 10 runs, an excellent result, and thus, the proposed system might be regarded as an exceptionally attractive solution for the perfume and cosmetic industries.


Assuntos
Álcoois/química , Burkholderia cepacia/enzimologia , Enzimas Imobilizadas/química , Lipase/química , Lipase/metabolismo , Adsorção , Enzimas Imobilizadas/metabolismo , Hidrólise , Cinética , Estabilidade Proteica
5.
PLoS One ; 13(10): e0205532, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30308030

RESUMO

The main aim of this study was to prepare gelatine-based hydrogels containing entrapped substrate and to examine the applicability of these matrices for detection of enzymes with a specified catalytic activity. The general research concept assumed the use of a substrate that, in the presence of a particular enzyme, will quickly undergo conversion to a coloured product. ortho-Nitrophenyl-ß-D-galactopyranoside (ONPG) was used as the immobilized substrate and ß-galactosidase from Kluyveromyces lactis as the biocatalyst to be determined. Among other factors, the range of detectable concentrations of galactosidase, the operational pH range, the time necessary to achieve a visible response and the preferred storage conditions for the test were determined. As a result, an effective colourimetric test for ß-galactosidase detection was obtained. Its main advantages include (i) the effective detection of the enzyme at concentrations greater than or equal to 0.6 mg.L-1, (ii) the ability to perform initial quantification of the enzyme on the basis of the intensity of the obtained colour (iii) applicability in a wide pH range (from 4.0 to 9.0), (iv) a relatively short response time (from 1 to a maximum of 30 minutes) and (v) stability in long-term storage at 4°C (90 days without loss of specific properties).


Assuntos
Colorimetria/instrumentação , Hidrogéis , Animais , Enzimas Imobilizadas/química , Proteínas Fúngicas/análise , Proteínas Fúngicas/química , Gelatina , Glucosídeos/química , Concentração de Íons de Hidrogênio , Kluyveromyces , Suínos , Fatores de Tempo , beta-Galactosidase/análise , beta-Galactosidase/química
6.
J Mol Model ; 23(11): 305, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28983671

RESUMO

Polyvinyl alcohol (PVA) is a material with a variety of applications in separation, biotechnology, and biomedicine. Using combined Monte Carlo and molecular dynamics techniques, we present an extensive comparative study of second- and third-generation force fields Universal, COMPASS, COMPASS II, PCFF, and the newly developed INTERFACE, as applied to this system. In particular, we show that an INTERFACE force field provides a possibility of composing a reliable atomistic model to reproduce density change of PVA matrix in a narrow temperature range (298-348 K) and calculate a thermal expansion coefficient with reasonable accuracy. Thus, the INTERFACE force field may be used to predict mechanical properties of the PVA system, being a scaffold for hydrogels, with much greater accuracy than latter approaches. Graphical abstract Molecular Dynamics and Monte Carlo studies indicate that it is possible to predict properties of the PVA in narrow temperature range by using the INTERFACE force field.

7.
PLoS One ; 11(10): e0164213, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27711193

RESUMO

Hydroxylation of L-tyrosine to 3,4-dihydroxyphenylalanine (L-DOPA) by immobilized tyrosinase in the presence of ascorbic acid (AH2), which reduces DOPA-quinone to L-DOPA, is characterized by low reaction yields that are mainly caused by the suicide inactivation of tyrosinase by L-DOPA and AH2. The main aim of this work was to compare processes with native and immobilized tyrosinase to identify the conditions that limit suicide inactivation and produce substrate conversions to L-DOPA of above 50% using HPLC analysis. It was shown that immobilized tyrosinase does not suffer from partitioning and diffusion effects, allowing a direct comparison of the reactions performed with both forms of the enzyme. In typical processes, additional aeration was applied and boron ions to produce the L-DOPA and AH2 complex and hydroxylamine to close the cycle of enzyme active center transformations. It was shown that the commonly used pH 9 buffer increased enzyme stability, with concomitant reduced reactivity of 76%, and that under these conditions, the maximal substrate conversion was approximately 25 (native) to 30% (immobilized enzyme). To increase reaction yield, the pH of the reaction mixture was reduced to 8 and 7, producing L-DOPA yields of approximately 95% (native enzyme) and 70% (immobilized). A three-fold increase in the bound enzyme load achieved 95% conversion in two successive runs, but in the third one, tyrosinase lost its activity due to strong suicide inactivation caused by L-DOPA processing. In this case, the cost of the immobilized enzyme preparation is not overcome by its reuse over time, and native tyrosinase may be more economically feasible for a single use in L-DOPA production. The practical importance of the obtained results is that highly efficient hydroxylation of monophenols by tyrosinase can be obtained by selecting the proper reaction pH and is a compromise between complexation and enzyme reactivity.


Assuntos
Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/metabolismo , Tirosina/química , Agaricales/enzimologia , Ar , Ácido Ascórbico/química , Boro/química , Soluções Tampão , Difusão , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Hidroxilação , Levodopa/química , Fosfatos/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...