Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 13237, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918366

RESUMO

The identification of novel drug-target interactions (DTI) is critical to drug discovery and drug repurposing to address contemporary medical and public health challenges presented by emergent diseases. Historically, computational methods have framed DTI prediction as a binary classification problem (indicating whether or not a drug physically interacts with a given protein target); however, framing the problem instead as a regression-based prediction of the physiochemical binding affinity is more meaningful. With growing databases of experimentally derived drug-target interactions (e.g. Davis, Binding-DB, and Kiba), deep learning-based DTI predictors can be effectively leveraged to achieve state-of-the-art (SOTA) performance. In this work, we formulated a DTI competition as part of the coursework for a senior undergraduate machine learning course and challenged students to generate component DTI models that might surpass SOTA models and effectively combine these component models as part of a meta-model using the Reciprocal Perspective (RP) multi-view learning framework. Following 6 weeks of concerted effort, 28 student-produced component deep-learning DTI models were leveraged in this work to produce a new SOTA RP-DTI model, denoted the Meta Undergraduate Student DTI (MUSDTI) model. Through a series of experiments we demonstrate that (1) RP can considerably improve SOTA DTI prediction, (2) our new double-cold experimental design is more appropriate for emergent DTI challenges, (3) that our novel MUSDTI meta-model outperforms SOTA models, (4) that RP can improve upon individual models as an ensembling method, and finally, (5) RP can be utilized for low computation transfer learning. This work introduces a number of important revelations for the field of DTI prediction and sequence-based, pairwise prediction in general.


Assuntos
Desenvolvimento de Medicamentos , Descoberta de Drogas , Simulação por Computador , Descoberta de Drogas/métodos , Interações Medicamentosas , Humanos , Aprendizado de Máquina
2.
J Biol Chem ; 284(46): 31953-61, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19773549

RESUMO

The octapeptide hormone angiotensin II exerts a wide variety of cardiovascular effects through the activation of the angiotensin II Type 1 (AT(1)) receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein- coupled receptors, the AT(1) receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. The role of the fifth transmembrane domain (TMD5) was investigated using the substituted cysteine accessibility method. All of the residues within Thr-190 to Leu-217 region were mutated one at a time to cysteine, and after expression in COS-7 cells, the mutant receptors were treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA reacts selectively with water-accessible, free sulfhydryl groups of endogenous or introduced point mutation cysteines. If a cysteine is found in the binding pocket, the covalent modification will affect the binding kinetics of the ligand. MTSEA substantially decreased the binding affinity of L197C-AT(1), N200C-AT(1), I201C-AT(1), G203C-AT(1), and F204C-AT(1) mutant receptors, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT(1) receptor. Interestingly, this pattern of acquired MTSEA sensitivity was altered for TMD5 reporter cysteines engineered in a constitutively active N111G-AT(1) receptor background. Indeed, mutant I201C-N111G-AT(1) became more sensitive to MTSEA, whereas mutant G203C-N111G-AT(1) lost some sensitivity. Our results suggest that constitutive activation of AT(1) receptor causes an apparent counterclockwise rotation of TMD5 as viewed from the extracellular side.


Assuntos
Angiotensina II/farmacologia , Receptor Tipo 1 de Angiotensina/química , Receptor Tipo 1 de Angiotensina/metabolismo , Vasoconstritores/farmacologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Metanossulfonato de Etila/análogos & derivados , Metanossulfonato de Etila/farmacologia , Humanos , Indicadores e Reagentes/farmacologia , Cinética , Ligantes , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Ligação Proteica , Conformação Proteica , Receptor Tipo 1 de Angiotensina/genética , Transfecção , Fosfolipases Tipo C/metabolismo
3.
J Virol ; 82(2): 785-94, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17989184

RESUMO

Currently used vaccines protect mainly through the production of neutralizing antibodies. However, antibodies confer little or no protection for a majority of chronic viral infections that require active involvement of cytotoxic T lymphocytes (CTLs). Virus-like particles (VLPs) have been shown to be efficient inducers of cell-mediated immune responses, but administration of an adjuvant is generally required. We recently reported the generation of a novel VLP system exploiting the self-assembly property of the papaya mosaic virus (PapMV) coat protein. We show here that uptake of PapMV-like particles by murine splenic dendritic cells (DCs) in vivo leads to their maturation, suggesting that they possess intrinsic adjuvant-like properties. DCs pulsed with PapMV-like particles displaying the lymphocytic choriomeningitis virus (LCMV) p33 immunodominant CTL epitope (PapMV-p33) efficiently process and cross-present the viral epitope to p33-specific transgenic T cells. Importantly, the CTL epitope is also properly processed and presented in vivo, since immunization of p33-specific T-cell receptor transgenic mice with PapMV-p33 induces the activation of large numbers of specific CTLs. C57BL/6 mice immunized with PapMV-p33 VLPs in the absence of adjuvant develop p33-specific effector CTLs that rapidly expand following LCMV challenge and protect vaccinated mice against LCMV infection in a dose-dependent manner. These results demonstrate the efficiency of this novel plant virus-based vaccination platform in inducing DC maturation leading to protective CTL responses.


Assuntos
Células Dendríticas/imunologia , Potexvirus/imunologia , Linfócitos T Citotóxicos/imunologia , Virossomos/imunologia , Animais , Infecções por Arenaviridae/prevenção & controle , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Potexvirus/genética , Virossomos/genética
4.
Virology ; 363(1): 59-68, 2007 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-17320136

RESUMO

Plant-virus-based vaccines have emerged as a promising avenue in vaccine development. This report describes the engineering of an innovative vaccine platform using the papaya mosaic virus (PapMV) capsid protein (CP) as a carrier protein and a C-terminal fused hepatitis C virus (HCV) E2 epitope as the immunogenic target. Two antigen organizations of the PapMV-based vaccines were tested: a virus-like-particle (VLP; PapMVCP-E2) and a monomeric form (PapMVCP(27-215)-E2). While the two forms of the vaccine were both shown to be actively internalized in vitro in bone-marrow-derived antigen presenting cells (APCs), immunogenicity was demonstrated to be strongly dependent on antigen organization. Indeed, C3H/HeJ mice injected twice with the multimeric VLP vaccine showed a long-lasting humoral response (more than 120 days) against both the CP and the fused HCV E2 epitope. The antibody profile (production of IgG1, IgG2a, IgG2b, IgG3) suggests a Th1/Th2 response. Immunogenicity of the PapMV vaccine platform was not observed when the monomer PapMVCP-E2 was injected. These results demonstrate for the first time the potential of the PapMV vaccine platform and the critical function of multimerization in its immunogenicity.


Assuntos
Carica/virologia , Epitopos/imunologia , Engenharia Genética , Hepacivirus/imunologia , Vírus do Mosaico/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Células da Medula Óssea/citologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Células Dendríticas/citologia , Células Dendríticas/imunologia , Hepacivirus/genética , Anticorpos Anti-Hepatite C/imunologia , Antígenos da Hepatite C/genética , Antígenos da Hepatite C/imunologia , Humanos , Camundongos , Vírus do Mosaico/fisiologia , RNA/genética , Proteínas do Envelope Viral/genética , Vacinas Virais/química , Vacinas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...