Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Microbiol ; 12: 621274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33597940

RESUMO

In the myrmecophytic mutualistic relationship between Azteca ants and Cecropia plants both species receive protection and exchange nutrients. The presence of microorganisms in this symbiotic system has been reported, and the symbiotic role of some fungi involved in the myrmecophytic interactions has been described. In this work we focus on bacteria within this mutualism, conducting isolations and screening for antimicrobial activities, genome sequencing, and biochemical characterization. We show that Pantoea, Rhizobium, Methylobacterium, Streptomyces and Pseudomonas are the most common cultivable genera of bacteria. Interestingly, Pseudomonas spp. isolates showed potent activity against 83% of the pathogens tested in our antimicrobial activity assays, including a phytopathogenic fungus isolated from Cecropia samples. Given the predicted nitrogen limitations associated with the fungal patches within this myrmecophyte, we performed nitrogen fixation analyses on the bacterial isolates within the Proteobacteria and show the potential for nitrogen fixation in Pseudomonas strains. The genome of one Pseudomonas strain was sequenced and analyzed. The gene cluster involved in the biosynthesis of cyclic lipodepsipeptides (CLPs) was identified, and we found mutations that may be related to the loss of function in the dual epimerization/condensation domains. The compound was isolated, and its structure was determined, corresponding to the antifungal viscosinamide. Our findings of diazotrophy and production of viscosinamide in multiple Pseudomonas isolates suggests that this bacterial genus may play an important role in the Cecropia-Azteca symbiosis.

2.
Springerplus ; 3: 382, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25110630

RESUMO

The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems.

3.
Curr Microbiol ; 65(5): 622-32, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22886401

RESUMO

Endophytic fungi are considered a rich source of active compounds resulting from their secondary metabolism. Fungi from marine environment grow in a habitat with unique conditions that can contribute to the activation of metabolic pathways of synthesis of different unknown molecules. The production of these compounds may support the adaptation and survival of the fungi in the marine ecosystem. Mangroves are ecosystems situated between land and sea. They are frequently found in tropical and subtropical areas and enclose approximately 18.1 million hectares of the planet. The great biodiversity found in these ecosystems shows the importance of researching them, including studies regarding new compounds derived from the endophytic fungi that inhabit these ecosystems. 3-hydroxypropionic acid (3-HPA) has been isolated from the mangrove endophytic fungus Diaporthe phaseolorum, which was obtained from branches of Laguncularia racemosa. The structure of this compound was elucidated by spectroscopic methods, mainly 1D and 2D NMR. In bioassays, 3-HPA showed antimicrobial activities against both Staphylococcus aureus and Salmonella typhi. The structure of this antibiotic was modified by the chemical reaction of Fischer-Speier esterification to evaluate the biologic activity of its chemical analog. The esterified product, 3-hydroxypropanoic ethyl ester, did not exhibit antibiotic activity, suggesting that the free carboxylic acid group is important to the pharmacological activity. The antibiotic-producing strain was identified with internal transcribed spacer sequence data. To the best of our knowledge, this is the first report of antibacterial activity by 3-HPA against the growth of medically important pathogens.


Assuntos
Antibacterianos/metabolismo , Ascomicetos/metabolismo , Endófitos/metabolismo , Ácido Láctico/análogos & derivados , Antibacterianos/química , Antibacterianos/farmacologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Endófitos/genética , Endófitos/isolamento & purificação , Escherichia coli/efeitos dos fármacos , Ácido Láctico/química , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Filogenia , Plantas/microbiologia , Staphylococcus aureus/efeitos dos fármacos
4.
Curr Genet ; 58(1): 21-33, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22210192

RESUMO

We describe the genetic transformation of the mycelial tissue of Diaporthe phaseolorum, an endophytic fungus isolated from the mangrove species Laguncularia racemosa, using Agrobacterium tumefaciens-mediated transformation (ATMT). ATMT uses both the hygromycin B resistant (hph) gene and green fluorescent protein as the selection agents. The T-DNA integration into the fungal genome was assessed by both PCR and Southern blotting. All transformants examined were mitotically stable. An analysis of the T-DNA flanking sequences by thermal asymmetric interlaced PCR (TAIL-PCR) demonstrated that the disrupted genes in the transformants had similarities with conserved domains in proteins involved in antibiotic biosynthesis pathways. A library of 520 transformants was generated, and 31 of these transformants had no antibiotic activity against Staphylococcus aureus, an important human pathogen. The protocol described here, using ATMT in D. phaseolorum, will be useful for the identification and analysis of fungal genes controlling pathogenicity and antibiotic pathways. Moreover, this protocol may be used as a reference for other species in the Diaporthe genus. This is the first report to describe Agrobacterium-mediated transformation of D. phaseolorum as a tool for insertional mutagenesis.


Assuntos
Agrobacterium tumefaciens/genética , Ascomicetos/genética , Ascomicetos/metabolismo , Transformação Bacteriana , Árvores/microbiologia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Sequência de Bases , DNA Bacteriano , Ecossistema , Dados de Sequência Molecular , Mutação , Filogenia , Staphylococcus aureus/efeitos dos fármacos
5.
Neotrop Entomol ; 39(2): 308-10, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20498973

RESUMO

The colonization of Spodoptera frugiperda J.E. Smith larvae and rice seedlings by genetically modified endophytic bacterium Methylobacterium mesophilicum, and also the possible transfer of this bacterium to inside the larva's body during seedlings consumption were studied. The data obtained by bacterial reisolation and fluorescence microscopy showed that the bacterium colonized the rice seedlings, the larva's body and that the endophytic bacteria present in seedlings could be acquired by the larvae. In that way, the transference of endophytic bacterium from plants to insect can be a new and important strategy to insect control using engineered microorganisms.


Assuntos
Methylobacterium , Oryza/microbiologia , Spodoptera/microbiologia , Animais , Larva/microbiologia , Methylobacterium/genética , Organismos Geneticamente Modificados
6.
Neotrop. entomol ; 39(2): 308-310, mar.-abr. 2010.
Artigo em Inglês | LILACS | ID: lil-547697

RESUMO

The colonization of Spodoptera frugiperda J.E. Smith larvae and rice seedlings by genetically modified endophytic bacterium Methylobacterium mesophilicum, and also the possible transfer of this bacterium to inside the larva's body during seedlings consumption were studied. The data obtained by bacterial reisolation and fluorescence microscopy showed that the bacterium colonized the rice seedlings, the larva's body and that the endophytic bacteria present in seedlings could be acquired by the larvae. In that way, the transference of endophytic bacterium from plants to insect can be a new and important strategy to insect control using engineered microorganisms.


Assuntos
Animais , Methylobacterium , Oryza/microbiologia , Spodoptera/microbiologia , Larva/microbiologia , Methylobacterium/genética , Organismos Geneticamente Modificados
7.
J Insect Sci ; 8: 1-7, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-20233080

RESUMO

Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), the glassy-winged sharpshooter, is one of the most important vectors of the bacterium, Xylella fastidiosa subsp. piercei (Xanthomonadales: Xanthomonadaceae) that causes Pierce's Disease in grapevines in California. In the present study we report a new method for studying pathogen transmission or probing behavior of H. vitripennis. When confined, H. vitripennis attempt to probe the surface of sterile containers 48 hours post-acquisition of X. f. piercei. The saliva deposited during attempted feeding probes was found to contain X. f. piercei. We observed no correlation between X. f. piercei titers in the foregut of H. vitripennis that fed on Xylella-infected grapevines and the presence of this bacterium in the deposited saliva. The infection rate after a 48 h post-acquisition feeding on healthy citrus and grapevines was observed to be 77% for H. vitripennis that fed on grapevines and 81% for H. vitripennis that fed on citrus, with no difference in the number of positive probing sites from H. vitripennis that fed on either grapevine or citrus. This method is amenable for individual assessment of X. f. piercei-infecuvity, with samples less likely to be affected by tissue contamination that is usually present in whole body extracts.


Assuntos
Citrus/microbiologia , Hemípteros/microbiologia , Vitis/microbiologia , Xylella/fisiologia , Animais , Comportamento Animal/fisiologia , Citrus/parasitologia , Saliva/microbiologia , Vitis/parasitologia , Xylella/isolamento & purificação
8.
Can J Microbiol ; 52(5): 419-26, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16699566

RESUMO

Over the last few years, endophytic bacterial communities associated with citrus have been studied as key components interacting with Xylella fastidiosa. In this study, we investigated the possible interaction between the citrus endophyte Methylobacterium mesophilicum SR1.6/6 and X. fastidiosa in model plants such as Catharanthus roseus (Madagaskar periwinkle) and Nicotiana clevelandii (Clevelands tobacco). The aim of this study was to establish the fate of M. mesophilicum SR1.6/6 after inoculation of C. roseus and N. clevelandii plants, using PCR-DGGE (polymerase chain reaction--denaturing gradient gel electrophoresis) and plating techniques. Shifts in the indigenous endophytic bacterial communities were observed in plants inoculated with strain SR1.6/6, using specific primers targeting alpha- and beta-Proteobacteria. Cells of strain SR1.6/6 were observed in a biofilm structure on the root and hypocotyl surfaces of in vitro seedlings inoculated with M. mesophilicum SR1.6/6. This emphasizes the importance of these tissues as main points of entrance for this organism. The results showed that C. roseus and N. clevelandii could be used as model plants to study the interaction between M. mesophilicum and X. fastidiosa.


Assuntos
Methylobacterium/fisiologia , Agricultura/métodos , Biofilmes/crescimento & desenvolvimento , Catharanthus/microbiologia , Citrus/microbiologia , Primers do DNA , Methylobacterium/genética , Methylobacterium/isolamento & purificação , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Reação em Cadeia da Polimerase , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Plântula/microbiologia , Nicotiana/microbiologia , Xylella/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...