Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951616

RESUMO

The selective hetero-dihalogenation of alkenes provides useful building blocks for a broad range of chemical applications. Unlike homo-dihalogenation, selective hetero-dihalogenation reactions, especially fluorohalogenation, are underdeveloped. Current approaches combine an electrophilic halogen source with a nucleophilic halogen source, which necessarily leads to anti-addition, and regioselectivity has only been achieved using highly activated alkenes. Here we describe an alternative, nucleophile-nucleophile approach that adds chloride and fluoride ions over unactivated alkenes in a highly regio-, chemo- and diastereoselective manner. A curious switch in the reaction mechanism was discovered, which triggers a complete reversal of the diastereoselectivity to promote either anti- or syn-addition. The conditions are demonstrated on an array of pharmaceutically relevant compounds, and detailed mechanistic studies reveal the selectivity and the switch between the syn- and anti-diastereomers are based on different active iodanes and which of the two halides adds first.

2.
Angew Chem Int Ed Engl ; 63(30): e202404666, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38695434

RESUMO

The 1,3-difunctionalization of unactivated alkenes is an under-explored transformation that leads to moieties that are otherwise challenging to prepare. Herein, we report a hypervalent iodine-mediated 1,3-difluorination of homoallylic (aryl) ethers to give unreported 1,3-difluoro-4-oxy groups with moderate to excellent diastereoselectivity. The transformation proceeds through a different mode of reactivity for 1,3-difunctionalization, in which a regioselective addition of fluoride opens a transiently formed oxonium intermediate to rearrange an alkyl chain. The optimized protocol is scalable and shown to proceed well with a variety of functional groups and substitution on the alkenyl chain, hence providing ready access to this fluorinated, conformationally controlled moiety.

3.
J Chem Theory Comput ; 17(4): 2307-2322, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33730851

RESUMO

Complex chemical reaction environments, such as those found in combustion engines, the upper atmosphere, or the interstellar medium, can contain large numbers of different reactive species participating in similarly large numbers of different chemical reactions. In such settings, identifying the most-likely multistep reaction mechanisms which lead to the production of a particular defined product species is an extremely challenging problem, requiring search and evaluation over a large number of different possible candidate mechanisms while also addressing the permutational challenges posed when considering a large number of reaction routes available to sets of identical molecular species. In this article, the problem of generating candidate reaction mechanisms which form a defined product from a diverse set of reactive molecules is cast as a discrete optimization of a permutationally invariant cost function describing similarity between the target product and the product generated by a trial reaction mechanism. This approach is demonstrated by generating 2230 candidate reaction mechanisms which form benzene from diverse sets of reactive molecules which have been experimentally identified in the interstellar medium. By screening this set of autogenerated mechanisms, using dispersion-corrected DFT to evaluate reaction energies and activation barriers, we identify several candidate barrierless reaction mechanisms (both previously proposed and new) for benzene formation which may operate in the low temperatures found in the interstellar medium and could be investigated further to supplement existing microkinetic models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...