Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Radiol ; 26(12): 4413-4422, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27012555

RESUMO

OBJECTIVE: To investigate different brain regions for grey (GM) and white matter (WM) damage in a well-defined cohort of neuromyelitis optica spectrum disorder (NMOSD) patients and compare advanced MRI techniques (VBM, Subcortical and cortical analyses (Freesurfer), and DTI) for their ability to detect damage in NMOSD. METHODS: We analyzed 21 NMOSD patients and 21 age and gender matched control subjects. VBM (GW/WM) and DTI whole brain (TBSS) analyses were performed at different statistical thresholds to reflect different statistical approaches in previous studies. In an automated atlas-based approach, Freesurfer and DTI results were compared between NMOSD and controls. RESULTS: DTI TBSS and DTI atlas based analysis demonstrated microstructural impairment only within the optic radiation or in regions associated with the optic radiation (posterior thalamic radiation p < 0.001, 6.9 % reduction of fractional anisotropy). VBM demonstrated widespread brain GM and WM reduction, but only at exploratory statistical thresholds, with no differences remaining after correction for multiple comparisons. Freesurfer analysis demonstrated no group differences. CONCLUSION: NMOSD specific parenchymal brain damage is predominantly located in the optic radiation, likely due to a secondary degeneration caused by ON. In comparison, DTI appears to be the most reliable and sensitive technique for brain damage detection in NMOSD. KEY POINTS: • The hypothesis of a widespread brain damage in NMOSD is challenged. • The optic radiation (OR) is the most severely affected region. • OR-affection is likely due to secondary degeneration following optic neuritis. • DTI is currently the most sensitive technique for NMOSD-related brain-damage detection. • DTI is currently the most reliable technique for NMOSD-related brain-damage detection.


Assuntos
Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Neuromielite Óptica/diagnóstico por imagem , Nervo Óptico/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Anisotropia , Estudos de Casos e Controles , Imagem de Tensor de Difusão , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...