Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996053

RESUMO

Despite increasing in mass approximately 100-fold during larval life, the Drosophila CNS maintains its characteristic form. Dynamic interactions between the overlying basement membrane and underlying surface glia are known to regulate CNS structure in Drosophila, but the genes and pathways that establish and maintain CNS morphology during development remain poorly characterized. To identify genes that regulate CNS shape in Drosophila, we conducted an EMS-based, forward genetic screen of the second chromosome, uncovered 50 mutations that disrupt CNS structure, and mapped these alleles to 17 genes. Analysis of whole genome sequencing data wedded to genetic studies uncovered the affected gene for all but one mutation. Identified genes include well characterized regulators of tissue shape, like LanB1, viking, and Collagen type IV alpha1, and previously characterized genes, such as Toll-2 and Rme-8, with no known role in regulating CNS structure. We also uncovered that papilin and C1GalTA likely act in the same pathway to regulate CNS structure and found that the fly homolog of a glucuronosyltransferase, B4GAT1/LARGE1, that regulates Dystroglycan function in mammals is required to maintain CNS shape in Drosophila. Finally, we show that the senseless-2 transcription factor is expressed and functions specifically in surface glia found on peripheral nerves but not in the CNS to govern CNS structure, identifying a gene that functionally subdivides a glial subtype along the peripheral-central axis. Future work on these genes should clarify the genetic mechanisms that ensure the homeostasis of CNS form during development.

2.
bioRxiv ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38260379

RESUMO

Dihydroceramide desaturases convert dihydroceramides to ceramides, the precursors of all complex sphingolipids. Reduction of DEGS1 dihydroceramide desaturase function causes pediatric neurodegenerative disorder hypomyelinating leukodystrophy-18 (HLD-18). We discovered that infertile crescent (ifc), the Drosophila DEGS1 homolog, is expressed primarily in glial cells to promote CNS development by guarding against neurodegeneration. Loss of ifc causes massive dihydroceramide accumulation and severe morphological defects in cortex glia, including endoplasmic reticulum (ER) expansion, failure of neuronal ensheathment, and lipid droplet depletion. RNAi knockdown of the upstream ceramide synthase schlank in glia of ifc mutants rescues ER expansion, suggesting dihydroceramide accumulation in the ER drives this phenotype. RNAi knockdown of ifc in glia but not neurons drives neuronal cell death, suggesting that ifc function in glia promotes neuronal survival. Our work identifies glia as the primary site of disease progression in HLD-18 and may inform on juvenile forms of ALS, which also feature elevated dihydroceramide levels.

3.
Proc Natl Acad Sci U S A ; 120(32): e2307451120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523539

RESUMO

Cell-type-specific tools facilitate the identification and functional characterization of the distinct cell types that form the complexity of neuronal circuits. A large collection of existing genetic tools in Drosophila relies on enhancer activity to label different subsets of cells and has been extremely useful in analyzing functional circuits in adults. However, these enhancer-based GAL4 lines often do not reflect the expression of nearby gene(s) as they only represent a small portion of the full gene regulatory elements. While genetic intersectional techniques such as the split-GAL4 system further improve cell-type-specificity, it requires significant time and resources to screen through combinations of enhancer expression patterns. Here, we use existing developmental single-cell RNA sequencing (scRNAseq) datasets to select gene pairs for split-GAL4 and provide a highly efficient and predictive pipeline (scMarco) to generate cell-type-specific split-GAL4 lines at any time during development, based on the native gene regulatory elements. These gene-specific split-GAL4 lines can be generated from a large collection of coding intronic MiMIC/CRIMIC lines or by CRISPR knock-in. We use the developing Drosophila visual system as a model to demonstrate the high predictive power of scRNAseq-guided gene-specific split-GAL4 lines in targeting known cell types, annotating clusters in scRNAseq datasets as well as in identifying novel cell types. Lastly, the gene-specific split-GAL4 lines are broadly applicable to any other Drosophila tissue. Our work opens new avenues for generating cell-type-specific tools for the targeted manipulation of distinct cell types throughout development and represents a valuable resource for the Drosophila community.


Assuntos
Proteínas de Drosophila , Fatores de Transcrição , Animais , Fatores de Transcrição/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Técnicas Genéticas , Análise de Sequência de RNA , Drosophila melanogaster/metabolismo
4.
bioRxiv ; 2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36778312

RESUMO

Cell-type-specific tools facilitate the identification and functional characterization of distinct cell types, which underly the complexity of neuronal circuits. A large collection of existing genetic tools in Drosophila relies on enhancer activity to label different subsets of cells. These enhancer-based GAL4 lines often fail to show a predicable expression pattern to reflect the expression of nearby gene(s), partly due to an incomplete capture of the full gene regulatory elements. While genetic intersectional technique such as the split-GAL4 system further improve cell-type-specificity, it requires significant time and resource to generate and screen through combinations of enhancer expression patterns. In addition, since existing enhancer-based split-GAL4 lines that show cell-type-specific labeling in adult are not necessarily active nor specific in early development, there is a relative lack of tools for the study of neural development. Here, we use an existing single-cell RNA sequencing (scRNAseq) dataset to select gene pairs and provide an efficient pipeline to generate cell-type-specific split-GAL4 lines based on the native genetic regulatory elements. These gene-specific split-GAL4 lines can be generated from a large collection of coding intronic MiMIC/CRIMIC lines either by embryo injection or in vivo cassette swapping crosses and/or CRISPR knock-in at the N or C terminal of the gene. We use the developing Drosophila visual system as a model to demonstrate the high prediction power of scRNAseq-guided gene specific split-GAL4 lines in targeting known cell types. The toolkit allows efficient cluster annotation in scRNAseq datasets but also the identification of novel cell types. Lastly, the gene-specific split-GAL4 lines are broadly applicable to Drosophila tissues. Our work opens new avenues for generating cell-type-specific tools for the targeted manipulation of distinct cell types throughout development and represents a valuable resource to the fly research community. Significance Statement: Understanding the functional role of individual cell types in the nervous systems has remained a major challenge for neuroscience researchers, partly due to incomplete identification and characterization of underlying cell types. To study the development of individual cell types and their functional roles in health and disease, experimental access to a specific cell type is often a prerequisite. Here, we establish an experimental pipeline to generate gene-specific split-GAL4 guided by single-cell RNA sequencing datasets. These lines show high accuracy for labeling targeted cell types from early developmental stages to adulthood and can be applied to any tissues in Drosophila. The collection of gene-speicifc-split-GAL4 will provide a valuable resource to the entire fly research community.

5.
Curr Biol ; 33(3): 449-463.e5, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36580915

RESUMO

Insulin signaling plays a pivotal role in metabolic control and aging, and insulin accordingly is a key factor in several human diseases. Despite this importance, the in vivo activity dynamics of insulin-producing cells (IPCs) are poorly understood. Here, we characterized the effects of locomotion on the activity of IPCs in Drosophila. Using in vivo electrophysiology and calcium imaging, we found that IPCs were strongly inhibited during walking and flight and that their activity rebounded and overshot after cessation of locomotion. Moreover, IPC activity changed rapidly during behavioral transitions, revealing that IPCs are modulated on fast timescales in behaving animals. Optogenetic activation of locomotor networks ex vivo, in the absence of actual locomotion or changes in hemolymph sugar levels, was sufficient to inhibit IPCs. This demonstrates that the behavioral state-dependent inhibition of IPCs is actively controlled by neuronal pathways and is independent of changes in glucose concentration. By contrast, the overshoot in IPC activity after locomotion was absent ex vivo and after starvation, indicating that it was not purely driven by feedforward signals but additionally required feedback derived from changes in hemolymph sugar concentration. We hypothesize that IPC inhibition during locomotion supports mobilization of fuel stores during metabolically demanding behaviors, while the rebound in IPC activity after locomotion contributes to replenishing muscle glycogen stores. In addition, the rapid dynamics of IPC modulation support a potential role of insulin in the state-dependent modulation of sensorimotor processing.


Assuntos
Proteínas de Drosophila , Células Secretoras de Insulina , Animais , Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Proteínas de Drosophila/metabolismo , Glicogênio/metabolismo , Insulina/metabolismo , Açúcares/metabolismo
6.
Cell Rep ; 35(12): 109284, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161775

RESUMO

Glucose is arguably the most important molecule in metabolism, and its dysregulation underlies diabetes. We describe a family of single-wavelength genetically encoded glucose sensors with a high signal-to-noise ratio, fast kinetics, and affinities varying over four orders of magnitude (1 µM to 10 mM). The sensors allow mechanistic characterization of glucose transporters expressed in cultured cells with high spatial and temporal resolution. Imaging of neuron/glia co-cultures revealed ∼3-fold faster glucose changes in astrocytes. In larval Drosophila central nervous system explants, intracellular neuronal glucose fluxes suggested a rostro-caudal transport pathway in the ventral nerve cord neuropil. In zebrafish, expected glucose-related physiological sequelae of insulin and epinephrine treatments were directly visualized. Additionally, spontaneous muscle twitches induced glucose uptake in muscle, and sensory and pharmacological perturbations produced large changes in the brain. These sensors will enable rapid, high-resolution imaging of glucose influx, efflux, and metabolism in behaving animals.


Assuntos
Engenharia Genética , Glucose/metabolismo , Modelos Biológicos , Animais , Transporte Biológico , Sistema Nervoso Central/metabolismo , Drosophila/metabolismo , Células HEK293 , Humanos , Imageamento Tridimensional , Larva/metabolismo , Músculos/metabolismo , Neuroglia/metabolismo , Proteínas/metabolismo , Ratos Sprague-Dawley , Peixe-Zebra/metabolismo
7.
Elife ; 92020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32216875

RESUMO

The Drosophila ventral nerve cord (VNC) is composed of thousands of neurons born from a set of individually identifiable stem cells. The VNC harbors neuronal circuits required to execute key behaviors, such as flying and walking. Leveraging the lineage-based functional organization of the VNC, we investigated the developmental and molecular basis of behavior by focusing on lineage-specific functions of the homeodomain transcription factor, Unc-4. We found that Unc-4 functions in lineage 11A to promote cholinergic neurotransmitter identity and suppress the GABA fate. In lineage 7B, Unc-4 promotes proper neuronal projections to the leg neuropil and a specific flight-related take-off behavior. We also uncovered that Unc-4 acts peripherally to promote proprioceptive sensory organ development and the execution of specific leg-related behaviors. Through time-dependent conditional knock-out of Unc-4, we found that its function is required during development, but not in the adult, to regulate the above events.


Assuntos
Encéfalo/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Proteínas de Homeodomínio/fisiologia , Neurônios/fisiologia , Animais , Comportamento Animal , Linhagem da Célula , Proteínas de Drosophila/genética , Voo Animal , Proteínas de Homeodomínio/genética , Neurotransmissores/análise
8.
Elife ; 82019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30912745

RESUMO

The vast majority of the adult fly ventral nerve cord is composed of 34 hemilineages, which are clusters of lineally related neurons. Neurons in these hemilineages use one of the three fast-acting neurotransmitters (acetylcholine, GABA, or glutamate) for communication. We generated a comprehensive neurotransmitter usage map for the entire ventral nerve cord. We did not find any cases of neurons using more than one neurotransmitter, but found that the acetylcholine specific gene ChAT is transcribed in many glutamatergic and GABAergic neurons, but these transcripts typically do not leave the nucleus and are not translated. Importantly, our work uncovered a simple rule: All neurons within a hemilineage use the same neurotransmitter. Thus, neurotransmitter identity is acquired at the stem cell level. Our detailed transmitter- usage/lineage identity map will be a great resource for studying the developmental basis of behavior and deciphering how neuronal circuits function to regulate behavior.


Assuntos
Linhagem da Célula/fisiologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/crescimento & desenvolvimento , Neurônios/metabolismo , Neurotransmissores/metabolismo , Animais , Diferenciação Celular , Drosophila , Células-Tronco/fisiologia
9.
Development ; 144(17): 3102-3113, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28760813

RESUMO

The extracellular matrix (ECM) regulates cell migration and sculpts organ shape. AdamTS proteins are extracellular metalloproteases known to modify ECM proteins and promote cell migration, but demonstrated roles for AdamTS proteins in regulating CNS structure and ensuring cell lineages remain fixed in place have not been uncovered. Using forward genetic approaches in Drosophila, we find that reduction of AdamTS-A function induces both the mass exodus of neural lineages out of the CNS and drastic perturbations to CNS structure. Expressed and active in surface glia, AdamTS-A acts in parallel to perlecan and in opposition to viking/collagen IV and ßPS-integrin to keep CNS lineages rooted in place and to preserve the structural integrity of the CNS. viking/collagen IV and ßPS-integrin are known to promote tissue stiffness and oppose the function of perlecan, which reduces tissue stiffness. Our work supports a model in which AdamTS-A anchors cells in place and preserves CNS architecture by reducing tissue stiffness.


Assuntos
Linhagem da Célula , Sistema Nervoso Central/citologia , Proteínas de Drosophila/metabolismo , Matriz Extracelular/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Alelos , Animais , Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Cadeias alfa de Integrinas/metabolismo , Mutação/genética , Neuroglia/citologia , Neuroglia/metabolismo , Fenótipo , Frações Subcelulares/metabolismo , Análise de Sobrevida
10.
Elife ; 52016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27845623

RESUMO

NeuromedinU is a potent regulator of food intake and activity in mammals. In Drosophila, neurons producing the homologous neuropeptide hugin regulate feeding and locomotion in a similar manner. Here, we use EM-based reconstruction to generate the entire connectome of hugin-producing neurons in the Drosophila larval CNS. We demonstrate that hugin neurons use synaptic transmission in addition to peptidergic neuromodulation and identify acetylcholine as a key transmitter. Hugin neuropeptide and acetylcholine are both necessary for the regulatory effect on feeding. We further show that subtypes of hugin neurons connect chemosensory to endocrine system by combinations of synaptic and peptide-receptor connections. Targets include endocrine neurons producing DH44, a CRH-like peptide, and insulin-like peptides. Homologs of these peptides are likewise downstream of neuromedinU, revealing striking parallels in flies and mammals. We propose that hugin neurons are part of an ancient physiological control system that has been conserved at functional and molecular level.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/anatomia & histologia , Drosophila/fisiologia , Ingestão de Alimentos , Vias Neurais/anatomia & histologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Acetilcolina/metabolismo , Animais , Larva/anatomia & histologia , Larva/fisiologia , Microscopia Eletrônica , Neurotransmissores/metabolismo
11.
Elife ; 5: e13399, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26975248

RESUMO

Neurogenesis in Drosophila occurs in two phases, embryonic and post-embryonic, in which the same set of neuroblasts give rise to the distinct larval and adult nervous systems, respectively. Here, we identified the embryonic neuroblast origin of the adult neuronal lineages in the ventral nervous system via lineage-specific GAL4 lines and molecular markers. Our lineage mapping revealed that neurons born late in the embryonic phase show axonal morphology and transcription factor profiles that are similar to the neurons born post-embryonically from the same neuroblast. Moreover, we identified three thorax-specific neuroblasts not previously characterized and show that HOX genes confine them to the thoracic segments. Two of these, NB2-3 and NB3-4, generate leg motor neurons. The other neuroblast is novel and appears to have arisen recently during insect evolution. Our findings provide a comprehensive view of neurogenesis and show how proliferation of individual neuroblasts is dictated by temporal and spatial cues.


Assuntos
Linhagem da Célula , Sistema Nervoso Central/embriologia , Drosophila/embriologia , Drosophila/crescimento & desenvolvimento , Neurogênese , Neurônios/classificação , Neurônios/fisiologia , Animais , Biomarcadores/análise , Diferenciação Celular , Proliferação de Células , Larva/crescimento & desenvolvimento
12.
Dev Biol ; 388(1): 117-33, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24512689

RESUMO

Hb9 is a homeodomain-containing transcription factor that acts in combination with Nkx6, Lim3, and Tail-up (Islet) to guide the stereotyped differentiation, connectivity, and function of a subset of neurons in Drosophila. The role of Hb9 in directing neuronal differentiation is well documented, but the lineage of Hb9(+) neurons is only partly characterized, its regulation is poorly understood, and most of the downstream genes through which it acts remain at large. Here, we complete the lineage tracing of all embryonic Hb9(+) neurons (to eight neuronal lineages) and provide evidence that hb9, lim3, and tail-up are coordinately regulated by a common set of upstream factors. Through the parallel use of micro-array gene expression profiling and the Dam-ID method, we searched for Hb9-regulated genes, uncovering transcription factors as the most over-represented class of genes regulated by Hb9 (and Nkx6) in the CNS. By a nearly ten-to-one ratio, Hb9 represses rather than activates transcription factors, highlighting transcriptional repression of other transcription factors as a core mechanism by which Hb9 governs neuronal determination. From the small set of genes activated by Hb9, we characterized the expression and function of two - fd59a/foxd, which encodes a transcription factor, and Nitric oxide synthase. Under standard lab conditions, both genes are dispensable for Drosophila development, but Nos appears to inhibit hyper-active behavior and fd59a appears to act in octopaminergic neurons to control egg-laying behavior. Together our data clarify the mechanisms through which Hb9 governs neuronal specification and differentiation and provide an initial characterization of the expression and function of Nos and fd59a in the Drosophila CNS.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Linhagem da Célula , Sistema Nervoso Central/embriologia , Elementos Facilitadores Genéticos , Fatores de Transcrição Forkhead/metabolismo , Estudos de Associação Genética , Genótipo , Hibridização In Situ , Dados de Sequência Molecular , Mutagênese , Neurônios/metabolismo , Óxido Nítrico Sintase/metabolismo , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos , Transcriptoma
13.
Development ; 141(5): 1011-21, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24550109

RESUMO

Most neurons of the adult Drosophila ventral nerve cord arise from a burst of neurogenesis during the third larval instar stage. Most of this growth occurs in thoracic neuromeres, which contain 25 individually identifiable postembryonic neuronal lineages. Initially, each lineage consists of two hemilineages--'A' (Notch(On)) and 'B' (Notch(Off))--that exhibit distinct axonal trajectories or fates. No reliable method presently exists to identify these lineages or hemilineages unambiguously other than labor-intensive lineage-tracing methods. By combining mosaic analysis with a repressible cell marker (MARCM) analysis with gene expression studies, we constructed a gene expression map that enables the rapid, unambiguous identification of 23 of the 25 postembryonic lineages based on the expression of 15 transcription factors. Pilot genetic studies reveal that these transcription factors regulate the specification and differentiation of postembryonic neurons: for example, Nkx6 is necessary and sufficient to direct axonal pathway selection in lineage 3. The gene expression map thus provides a descriptive foundation for the genetic and molecular dissection of adult-specific neurogenesis and identifies many transcription factors that are likely to regulate the development and differentiation of discrete subsets of postembryonic neurons.


Assuntos
Sistema Nervoso Central/metabolismo , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sistema Nervoso Central/citologia , Drosophila , Proteínas de Drosophila/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Neurogênese/genética , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição/genética
14.
Development ; 136(19): 3257-66, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19710170

RESUMO

Individual neurons adopt and maintain defined morphological and physiological phenotypes as a result of the expression of specific combinations of transcription factors. In particular, homeodomain-containing transcription factors play key roles in determining neuronal subtype identity in flies and vertebrates. dbx belongs to the highly divergent H2.0 family of homeobox genes. In vertebrates, Dbx1 and Dbx2 promote the development of a subset of interneurons, some of which help mediate left-right coordination of locomotor activity. Here, we identify and show that the single Drosophila ortholog of Dbx1/2 contributes to the development of specific subsets of interneurons via cross-repressive, lineage-specific interactions with the motoneuron-promoting factors eve and hb9 (exex). dbx is expressed primarily in interneurons of the embryonic, larval and adult central nervous system, and these interneurons tend to extend short axons and be GABAergic. Interestingly, many Dbx(+) interneurons share a sibling relationship with Eve(+) or Hb9(+) motoneurons. The non-overlapping expression of dbx and eve, or dbx and hb9, within pairs of sibling neurons is initially established as a result of Notch/Numb-mediated asymmetric divisions. Cross-repressive interactions between dbx and eve, and dbx and hb9, then help maintain the distinct expression profiles of these genes in their respective pairs of sibling neurons. Strict maintenance of the mutually exclusive expression of dbx relative to that of eve and hb9 in sibling neurons is crucial for proper neuronal specification, as misexpression of dbx in motoneurons dramatically hinders motor axon outgrowth.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Homeodomínio/metabolismo , Interneurônios/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Comportamento Animal , Diferenciação Celular , DNA/genética , Drosophila/citologia , Drosophila/genética , Proteínas de Drosophila/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Genes de Insetos , Proteínas de Homeodomínio/genética , Interneurônios/citologia , Locomoção , Dados de Sequência Molecular , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Mutação , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética , Ácido gama-Aminobutírico/metabolismo
15.
Genes Dev ; 17(23): 2966-78, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14665671

RESUMO

During sensory organ precursor (SOP) specification, a single cell is selected from a proneural cluster of cells. Here, we present evidence that Senseless (Sens), a zinc-finger transcription factor, plays an important role in this process. We show that Sens is directly activated by proneural proteins in the presumptive SOPs and a few cells surrounding the SOP in most tissues. In the cells that express low levels of Sens, it acts in a DNA-binding-dependent manner to repress transcription of proneural genes. In the presumptive SOPs that express high levels of Sens, it acts as a transcriptional activator and synergizes with proneural proteins. We therefore propose that Sens acts as a binary switch that is fundamental to SOP selection.


Assuntos
Proteínas Nucleares/fisiologia , Órgãos dos Sentidos/fisiologia , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Ligação a DNA/genética , Drosophila , Proteínas de Drosophila/genética , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Órgãos dos Sentidos/embriologia , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...