Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38979324

RESUMO

The prevailing view on post-translational modifications (PTMs) is that amino acid side chains in proteins are modified with a single PTM at any given time. However, a growing body of work has demonstrated crosstalk between different PTMs, some occurring on the same residue. Such interplay is seen with ADP-ribosylation and ubiquitylation, where specialized E3 ligases ubiquitylate targets for proteasomal degradation in an ADP-ribosylation-dependent manner. More recently, the DELTEX family of E3 ligases was reported to catalyze ubiquitylation of the 3'- hydroxy group of the adenine-proximal ribose of free NAD + and ADP-ribose in vitro , generating a non-canonical ubiquitin ester-linked species. In this report, we show, for the first time, that this dual PTM occurs in cells on mono-ADP-ribosylated (MARylated) PARP10 on Glu/Asp sites to form a MAR ubiquitin ester (MARUbe). We term this process m ono- A DP-ribosyl ub iquit ylation or MARUbylation. Using chemical and enzymatic treatments, including a newly characterized bacterial deubiquitinase with esterase-specific activity, we discovered that PARP10 MARUbylation is extended with K11-linked polyubiquitin chains. Finally, mechanistic studies using proteasomal and ubiquitin-activating enzyme inhibitors demonstrated that PARP10 MARUbylation leads to its proteasomal degradation, providing a functional role for this new PTM in regulating protein turnover.

2.
Cell Host Microbe ; 32(6): 913-924.e7, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38870903

RESUMO

Aspects of how Burkholderia escape the host's intrinsic immune response to replicate in the cell cytosol remain enigmatic. Here, we show that Burkholderia has evolved two mechanisms to block the activity of Ring finger protein 213 (RNF213)-mediated non-canonical ubiquitylation of bacterial lipopolysaccharide (LPS), thereby preventing the initiation of antibacterial autophagy. First, Burkholderia's polysaccharide capsule blocks RNF213 association with bacteria and second, the Burkholderia deubiquitylase (DUB), TssM, directly reverses the activity of RNF213 through a previously unrecognized esterase activity. Structural analysis provides insight into the molecular basis of TssM esterase activity, allowing it to be uncoupled from its isopeptidase function. Furthermore, a putative TssM homolog also displays esterase activity and removes ubiquitin from LPS, establishing this as a virulence mechanism. Of note, we also find that additional immune-evasion mechanisms exist, revealing that overcoming this arm of the host's immune response is critical to the pathogen.


Assuntos
Proteínas de Bactérias , Burkholderia , Lipopolissacarídeos , Ubiquitinação , Lipopolissacarídeos/metabolismo , Humanos , Burkholderia/imunologia , Proteínas de Bactérias/metabolismo , Esterases/metabolismo , Evasão da Resposta Imune , Ubiquitina-Proteína Ligases/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Autofagia , Virulência
3.
Res Sq ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37503018

RESUMO

Pathogenic bacteria have evolved diverse mechanisms to counteract cell-autonomous immunity, which otherwise guards both immune and non-immune cells from the onset of an infection1,2. The versatile immunity protein Ring finger protein 213 (RNF213)3-6 mediates the non-canonical ester-linked ubiquitylation of lipopolysaccharide (LPS), marking bacteria that sporadically enter the cytosol for destruction by antibacterial autophagy4. However, whether cytosol-adapted pathogens are ubiquitylated on their LPS and whether they escape RNF213-mediated immunity, remains unknown. Here we show that Burkholderia deubiquitylase (DUB), TssM7-9, is a potent esterase that directly reverses the ubiquitylation of LPS. Without TssM, cytosolic Burkholderia became coated in polyubiquitin and autophagy receptors in an RNF213-dependent fashion. Whereas the expression of TssM was sufficient to enable the replication of the non-cytosol adapted pathogen Salmonella, we demonstrate that Burkholderia has evolved a multi-layered defence system to proliferate in the host cell cytosol, including a block in antibacterial autophagy10-12. Structural analysis provided insight into the molecular basis of TssM esterase activity, allowing it to be uncoupled from isopeptidase function. TssM homologs conserved in another Gram-negative pathogen also reversed non-canonical LPS ubiquitylation, establishing esterase activity as a bacterial virulence mechanism to subvert host cell-autonomous immunity.

4.
Biomolecules ; 12(3)2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35327659

RESUMO

Ubiquitination is controlled by a series of E1, E2, and E3 enzymes that can ligate ubiquitin to cellular proteins and dictate the turnover of a substrate and the outcome of signalling events such as DNA damage repair and cell cycle. This process is complex due to the combinatorial power of ~35 E2 and ~1000 E3 enzymes involved and the multiple lysine residues on ubiquitin that can be used to assemble polyubiquitin chains. Recently, mass spectrometric methods have identified that most enzymes in the ubiquitination cascade can be further modified through acetylation or phosphorylation under particular cellular conditions and altered modifications have been noted in different cancers and neurodegenerative diseases. This review provides a cohesive summary of ubiquitination, acetylation, and phosphorylation sites in ubiquitin, the human E1 enzyme UBA1, all E2 enzymes, and some representative E3 enzymes. The potential impacts these post-translational modifications might have on each protein function are highlighted, as well as the observations from human disease.


Assuntos
Processamento de Proteína Pós-Traducional , Ubiquitina , Acetilação , Humanos , Fosforilação , Poliubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
5.
Biochemistry ; 60(16): 1276-1285, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33848125

RESUMO

Ubiquitin (Ub) signaling requires the covalent passage of Ub among E1, E2, and E3 enzymes. The choice of E2 and E3 enzymes combined with multiple rounds of the cascade leads to the formation of polyubiquitin chains linked through any one of the seven lysines on Ub. The linkage type and length act as a signal to trigger important cellular processes such as protein degradation or the DNA damage response. Recently, proteomics studies have identified that Ub can be acetylated at six of its seven lysine residues under various cell stress conditions. To understand the potential differences in Ub signaling caused by acetylation, we synthesized all possible acetylated ubiquitin (acUb) variants and examined the E1-mediated formation of the corresponding E2∼acUb conjugates in vitro using kinetic methods. A Förster resonance energy transfer assay was optimized in which the Ub constructs were labeled with a CyPet fluorophore and the E2 UBE2D1 was labeled with a YPet fluorophore to monitor the formation of E2∼Ub conjugates. Our methods enable the detection of small differences that may otherwise be concealed in steady-state ubiquitination experiments. We determined that Ub, acetylated at K11, K27, K33, K48, or K63, has altered turnover numbers for E2∼Ub conjugate formation by the E1 enzyme Uba1. This work provides evidence that acetylation of Ub can alter the catalysis of ubiquitination early on in the pathway.


Assuntos
Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Acetilação , Domínio Catalítico , Modelos Moleculares , Enzimas Ativadoras de Ubiquitina/química , Ubiquitinação
6.
Biophys J ; 118(7): 1679-1689, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32101714

RESUMO

The ubiquitin (Ub) proteolysis pathway uses an E1, E2, and E3 enzyme cascade to label substrate proteins with ubiquitin and target them for degradation. The mechanisms of ubiquitin chain formation remain unclear and include a sequential addition model, in which polyubiquitin chains are built unit by unit on the substrate, or a preassembly model, in which polyubiquitin chains are preformed on the E2 or E3 enzyme and then transferred in one step to the substrate. The E2 conjugating enzyme UBE2K has a 150-residue catalytic core domain and a C-terminal ubiquitin-associated (UBA) domain. Polyubiquitin chains anchored to the catalytic cysteine and free in solution are formed by UBE2K supporting a preassembly model. To study how UBE2K might assemble polyubiquitin chains, we synthesized UBE2K-Ub and UBE2K-Ub2 covalent complexes and analyzed E2 interactions with the covalently attached Ub and Ub2 moieties using NMR spectroscopy. The UBE2K-Ub complex exists in multiple conformations, including the catalytically competent closed state independent of the UBA domain. In contrast, the UBE2K-Ub2 complex takes on a more extended conformation directed by interactions between the classic I44 hydrophobic face of the distal Ub and the conserved MGF hydrophobic patch of the UBA domain. Our results indicate there are distinct differences between the UBE2K-Ub and UBE2K-Ub2 complexes and show how the UBA domain can alter the position of a polyubiquitin chain attached to the UBE2K active site. These observations provide structural insights into the unique Ub chain-building capacity for UBE2K.


Assuntos
Enzimas de Conjugação de Ubiquitina , Ubiquitina , Poliubiquitina , Domínios Proteicos , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
7.
FEBS Lett ; 594(7): 1226-1234, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31792955

RESUMO

Ubiquitination is a post-translational modification (PTM) capable of being regulated by other PTMs, including acetylation. However, the biological consequences of acetylated ubiquitin (acUb) variants are poorly understood, due to their transient nature in vivo and poor characterization in vitro. Since Ub is known to be acetylated in human cells, we produced all possible acUb variants using genetic code expansion. We also developed a protocol that optimizes acetyl-lysine addition to minimize mistranslated proteins and maximize site-specific acUb protein production. Purified acUb proteins were used in pilot ubiquitination assays and found to be competent with IpaH3CT and RNF8 E3 ligases. Overall, this work provides an optimized method to express and purify all acetyl-lysine variants for ubiquitin and shows these proteins can be used to identify potential unique ubiquitination patterns.


Assuntos
Código Genético , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinação/genética , Acetilação , Proteínas de Ligação a DNA/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/química , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...