Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 8(5): 2660-2666, 2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35541467

RESUMO

Noble metal nanoparticles have been extensively studied as photo-sensitive agents for photothermal cancer therapy. Precise control over the size and shape of the nanoparticles allowed strong optical absorption and efficient heat generation necessary for destroying a tumor to be achieved. However, one of the fundamental challenges of application of the nanoparticles towards photothermal cancer therapy is low specificity in the targeting tumor tissue in comparison with the healthy tissue and the resulting unfavorable biodistribution of the nanoparticles. Additional levels of control over particle distribution can be achieved by making the particles magnetic and using external magnets to control their accumulation in a tumor. Since the direct synthesis of particles with a magnetic core and a metallic shell limits the options for design and fine-tuning of plasmonic properties, the alternative approaches to the design of such materials have to be investigated. Here we propose and demonstrate a new design of a hybrid plasmono-magnetic material for photothermal heating created by grafting Au nanocages onto a surface of magnetic micro-beads. Next, we confirm its dual functionality in in vitro studies and show that individual hybrid particles can be magnetically controlled with a precision of a few micrometers and precisely destroy individual cells using plasmonic heating.

2.
Nanoscale ; 8(45): 18912-18920, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27714072

RESUMO

Understanding how plasmonic nanoparticles collectively generate heat upon exposure to light and thus increase the local temperature of the surrounding medium is critical for many applications such as plasmon-assisted microfluidics, plasmonic tweezers, and photothermal cancer therapy. Reliable temperature manipulation requires the capability to spatially and dynamically analyze local temperature profiles as a function of nanoparticle concentration and laser intensity. In this work, we present a novel method for visualization of local temperature increase using elastin-like polypeptides (ELP). We also propose a robust algorithm that allows the construction of reliable calibration curves using known boundary conditions and Boltzmann sigmoid fit applied to the ELP solution's temperature-absorption transfer function. Using this technique, for the first time, we successfully demonstrated how surface and volume distribution of the nano-heaters affect collective heat generation. This approach allows the visualization of dynamic 2D-temperature profiles and simultaneously enables the measurement of specific temperature at any point in a 2D-map. The experimental setup is compatible with conventional optical microscopy and requires no specialized hardware or complex sample preparation. Finally, the real time visualization of plasmonic heating offers an opportunity to control outcomes of thermo-plasmonics which enables a myriad of practical applications.

3.
Appl Opt ; 53(25): 5745-9, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25321372

RESUMO

In this paper, we demonstrate the optimization of a capacitively coupled plasma etching for the fabrication of a polysilicon waveguide with smooth sidewalls and low optical loss. A detailed experimental study on the influences of RF plasma power and chamber pressure on the roughness of the sidewalls of waveguides was conducted and waveguides were characterized using a scanning electron microscope. It was demonstrated that optimal combination of pressure (30 mTorr) and power (150 W) resulted in the smoothest sidewalls. The optical losses of the optimized waveguide were 4.1±0.6 dB/cm.

4.
Opt Express ; 21(23): 28001-9, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514313

RESUMO

Here we present a new design and FDTD simulations of light delivery by a nanowire-based intracellular endoscope. Nanowires can be used for minimally invasive and very local light delivery inside cells. One of the main challenges is coupling of light into the nanowire. We propose a new plasmonic coupler interface between cleaved optical fiber and a nanowire, and optimize light coupling efficiency and contrast.


Assuntos
Endoscópios , Luz , Nanotecnologia/instrumentação , Nanofios , Fibras Ópticas , Desenho de Equipamento , Humanos
5.
Langmuir ; 27(14): 9012-7, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21688806

RESUMO

Zinc oxide (ZnO) nanostructures have attracted great attention as a promising functional material with unique properties suitable for applications in UV lasers, light emitting diodes, field emission devices, sensors, field effect transistors, and solar cells. In the present work, ZnO nanowires have been synthesized on an n-type Si substrate using a hydrothermal method where surfactant acted as a modifying and protecting agent. The surface morphology, electrochemical properties, and opto-electrochemical properties of ZnO nanowires are investigated by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), cyclic voltammetry, and impedance spectroscopy techniques. The cycling characteristics and rate capability of the ZnO nanowires are explored through electrochemical studies performed under varying electrolytes. The photo response is observed using UV radiation. It is demonstrated that crystallinity, particle size, and morphology all play significant roles in the electrochemical performance of the ZnO electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...