Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 915: 169285, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38103612

RESUMO

Understanding mammalian responses to anthropogenic disturbance is challenging, as ecological processes and the patterns arising therefrom notoriously change across spatial and temporal scales, and among different landscape contexts. Responses to local scale disturbances are likely influenced by landscape context (e.g., overall landscape-level disturbance, landscape-level productivity). Hierarchical approaches considering small-scale sampling sites as nested holons within larger-scale landscapes, which constrain processes in lower-level holons, can potentially explain differences in ecological processes between multiple locations. We tested hypotheses about mammal responses to disturbance and interactions among holons using collected images from 957 camera sites across 9 landscapes in Alberta from 2007 to 2020 and examined occurrence for 11 mammal species using generalized linear mixed models. White-tailed deer occurred more in higher disturbed sites within lower disturbed landscapes (ß = -0.30 [-0.4 to -0.15]), whereas occurrence was greater in highly disturbed sites within highly disturbed landscapes for moose (ß = 0.20 [0.09-0.31]), coyote (ß = 0.20 [0.08-0.26]), and lynx (ß = 0.20 [0.07-0.26]). High disturbance sites in high productivity landscapes had higher occurrence of black bears (ß = -0.20 [-0.46 to -0.01]), lynx (ß = -0.70 [-0.97 to -0.34]), and wolves (ß = -0.50 [-0.73 to -0.21]). Conversely, we found higher probability of occurrence in low productivity landscapes with increasing site disturbance for mule deer (ß = 0.80 [0.39-1.14]), and white-tailed deer (ß = 0.20 [0.01-0.47]). We found the ecological context created by aggregate sums (high overall landscape disturbance), and by subcontinental hydrogeological processes in which that landscape is embedded (high landscape productivity), alter mammalian responses to anthropogenic disturbance at local scales. These responses also vary by species, which has implications for large-scale conservation planning. Management interventions must consider large-scale geoclimatic processes and geographic location of a landscape when assessing wildlife responses to disturbance.


Assuntos
Cervos , Lynx , Lobos , Animais , Ecossistema , Efeitos Antropogênicos
2.
Ecol Evol ; 13(9): e10464, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37720065

RESUMO

Outdoor recreation is widespread, with uncertain effects on wildlife. The human shield hypothesis (HSH) suggests that recreation could have differential effects on predators and prey, with predator avoidance of humans creating a spatial refuge 'shielding' prey from people. The generality of the HSH remains to be tested across larger scales, wherein human shielding may prove generalizable, or diminish with variability in ecological contexts. We combined data from 446 camera traps and 79,279 sampling days across 10 landscapes spanning 15,840 km2 in western Canada. We used hierarchical models to quantify the influence of recreation and landscape disturbance (roads, logging) on ungulate prey (moose, mule deer and elk) and carnivore (wolf, grizzly bear, cougar and black bear) site use. We found limited support for the HSH and strong responses to recreation at local but not larger spatial scales. Only mule deer showed positive but weak landscape-level responses to recreation. Elk were positively associated with local recreation while moose and mule deer responses were negative, contrary to HSH predictions. Mule deer showed a more complex interaction between recreation and land-use disturbance, with more negative responses to recreation at lower road density or higher logged areas. Contrary to HSH predictions, carnivores did not avoid recreation and grizzly bear site use was positively associated. We also tested the effects of roads and logging on temporal activity overlap between mule deer and recreation, expecting deer to minimize interaction with humans by partitioning time in areas subject to more habitat disturbance. However, temporal overlap between people and deer increased with road density. Our findings highlight the complex ecological patterns that emerge at macroecological scales. There is a need for expanded monitoring of human and wildlife use of recreation areas, particularly multi-scale and -species approaches to studying the interacting effects of recreation and land-use change on wildlife.

3.
Glob Chang Biol ; 29(20): 5802-5815, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37566106

RESUMO

Globally, climate is changing rapidly, which causes shifts in many species' distributions, stressing the need to understand their response to changing environmental conditions to inform conservation and management. Northern latitudes are expected to experience strongest changes in climate, with milder winters and decreasing snow cover. The wolverine (Gulo gulo) is a circumpolar, threatened carnivore distributed in northern tundra, boreal, and subboreal habitats. Previous studies have suggested that wolverine distribution and reproduction are constrained by a strong association with persistent spring snow cover. We assess this hypothesis by relating spatial distribution of 1589 reproductive events, a fitness-related proxy for female reproduction and survival, to snow cover over two decades. Wolverine distribution has increased and number of reproductive events increased 20 times in areas lacking spring snow cover during our study period, despite low monitoring effort where snow is sparse. Thus, the relationship between reproductive events and persistent spring snow cover weakened during this period. These findings show that wolverine reproductive success and hence distribution are less dependent on spring snow cover than expected. This has important implications for projections of future habitat availability, and thus distribution, of this threatened species. Our study also illustrates how past persecution, or other factors, that have restricted species distribution to remote areas can mask actual effects of environmental parameters, whose importance reveals when populations expand beyond previously restricted ranges. Overwhelming evidence shows that climate change is affecting many species and ecological processes, but forecasting potential consequences on a given species requires longitudinal data to revisit hypotheses and reassess the direction and magnitude of climate effects with new data. This is especially important for conservation-oriented management of species inhabiting dynamic systems where environmental factors and human activities interact, a common scenario for many species in different ecosystems around the globe.


Assuntos
Ecossistema , Mustelidae , Humanos , Animais , Feminino , Neve , Tundra , Estações do Ano , Mudança Climática
4.
Ecol Evol ; 13(6): e10224, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37396026

RESUMO

Increasing resource extraction and human activity are reshaping species' spatial distributions in human-altered landscape and consequently shaping the dynamics of interspecific interactions, such as between predators and prey. To evaluate the effects of industrial features and human activity on the occurrence of wolves (Canis lupus), we used wildlife detection data collected in 2014 from an array of 122 remote wildlife camera traps in Alberta's Rocky Mountains and foothills near Hinton, Canada. Using generalized linear models, we compared the occurrence frequency of wolves at camera sites to natural land cover, industrial disturbance (forestry and oil/gas exploration), human activity (motorized and non-motorized), and prey availability (moose, Alces alces; elk, Cervus elaphus; mule deer, Odocoileus hemionus; and white-tailed deer, Odocoileus virginianus). Industrial block features (well sites and cutblocks) and prey (elk or mule deer) availability interacted to influence wolf occurrence, but models including motorized and non-motorized human activity were not strongly supported. Wolves occurred infrequently at sites with high densities of well sites and cutblocks, except when elk or mule deer were frequently detected. Our results suggest that wolves risk using industrial block features when prey occur frequently to increase predation opportunities, but otherwise avoid them due to risk of human encounters. Effective management of wolves in anthropogenically altered landscapes thus requires the simultaneous consideration of industrial block features and populations of elk and mule deer.

5.
Sci Rep ; 12(1): 11692, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804035

RESUMO

Predator search efficiency can be enhanced by anthropogenic landscape change, leading to increased predator-prey encounters and subsequent prey population declines. Logging increases early successional vegetation, providing ungulate forage. This increased forage, however, is accompanied by linear feature networks that increase predator hunting efficiency by facilitating predator movement and increasing prey vulnerability. We used integrated step selection analyses to weigh support for multiple hypotheses representing the combined impact of logging features (cutblocks and linear features) on wolf (Canis lupus) movement and habitat selection in interior British Columbia. Further, we examine the relationship between logging and wolf kill-sites of moose (Alces alces) identified using spatiotemporal wolf location cluster analysis. Wolves selected for linear features, which increased their movement rates. New (0-8 years since harvest) cutblocks were selected by wolves. Moose kill-sites had a higher probability of occurring in areas with higher proportions of new and regenerating (9-24 years since harvest) cutblocks. The combined selection and movement responses by wolves to logging features, coupled with increased moose mortality sites associated with cutblocks, indicate that landscape change increases risk for moose. Cumulative effects of landscape change contribute to moose population declines, stressing the importance of cohesive management and restoration of anthropogenic features.


Assuntos
Cervos , Lobos , Animais , Cervos/fisiologia , Ecossistema , Movimento , Dinâmica Populacional , Comportamento Predatório , Lobos/fisiologia
6.
Sci Rep ; 12(1): 1072, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058533

RESUMO

Land modified for human use alters matrix shape and composition and is a leading contributor to global biodiversity loss. It can also play a key role in facilitating range expansion and ecosystem invasion by anthrophilic species, as it can alter food abundance and distribution while also influencing predation risk; the relative roles of these processes are key to habitat selection theory. We researched these relative influences by examining human footprint, natural habitat, and predator occurrence on seasonal habitat selection by range-expanding boreal white-tailed deer (Odocoileus virginianus) in the oil sands of western Canada. We hypothesized that polygonal industrial features (e.g. cutblocks, well sites) drive deer distributions as sources of early seral forage, while linear features (e.g. roads, trails, and seismic lines) and habitat associated with predators are avoided by deer. We developed seasonal 2nd -order resource selection models from three years of deer GPS-telemetry data, a camera-trap-based model of predator occurrence, and landscape spatial data to weigh evidence for six competing hypotheses. Deer habitat selection was best explained by the combination of polygonal and linear features, intact deciduous forest, and wolf (Canis lupus) occurrence. Deer strongly selected for linear features such as roads and trails, despite a potential increased risk of wolf encounters. Linear features may attract deer by providing high density forage opportunity in heavily exploited landscapes, facilitating expansion into the boreal north.


Assuntos
Conservação dos Recursos Naturais/métodos , Caça/tendências , Alberta , Animais , Biodiversidade , Canadá , Conservação dos Recursos Naturais/estatística & dados numéricos , Cervos/fisiologia , Ecologia/métodos , Ecossistema , Florestas , Humanos , Modelos Estatísticos , Comportamento Predatório/fisiologia , Estações do Ano
7.
Sci Total Environ ; 822: 153432, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35090931

RESUMO

Landscape change alters species' distributions, and understanding these changes is a key ecological and conservation goal. Species-habitat relationships are often modelled in the absence of syntopic species, but niche theory and emerging empirical research suggests heterospecifics should entrain (and statistically explain) variability in distribution, perhaps synergistically by interacting with landscape features. We examined the effects of syntopic species in boreal mammals' relationship to landscape change, using three years of camera-trap data in the western Nearctic boreal forest. Using an information-theoretic framework, we weighed evidence for additive and interactive variables measuring heterospecifics' co-occurrence in species distribution models built on natural and anthropogenic landscape features. We competed multiple hypotheses about the roles of natural features, anthropogenic features, predators, competitors, and species-habitat interaction terms in explaining relative abundance of carnivores, herbivores, and omnivores/scavengers. For most species, models including heterospecifics explained occurrence frequency better than landscape features alone. Dominant predator (wolf) occurrence was best explained by prey, while prey species were explained by apparent competitors and subdominant predators. Evidence for interactions between landscape features and heterospecifics was strong for coyotes and wolves but variable for other species. Boreal mammals' spatial distribution is a function of heterospecific co-occurrence as well as landscape features, with synergistic effects observed for most species. Understanding species' responses to anthropogenic landscape change thus requires a multi-taxa approach that incorporates interspecific relationships, enabling better inference into underlying processes from observed patterns.


Assuntos
Cervos , Lobos , Animais , Cervos/fisiologia , Ecossistema , Comportamento Predatório , Taiga , Lobos/fisiologia
8.
PLoS One ; 13(2): e0191730, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29389939

RESUMO

Species' distributions are influenced by a combination of landscape variables and biotic interactions with other species, including people. Grizzly bears and black bears are sympatric, competing omnivores that also share habitats with human recreationists. By adapting models for multi-species occupancy analysis, we analyzed trail camera data from 192 trail camera locations in and around Jasper National Park, Canada to estimate grizzly bear and black bear occurrence and intensity of trail use. We documented (a) occurrence of grizzly bears and black bears relative to habitat variables (b) occurrence and intensity of use relative to competing bear species and motorised and non-motorised recreational activity, and (c) temporal overlap in activity patterns among the two bear species and recreationists. Grizzly bears were spatially separated from black bears, selecting higher elevations and locations farther from roads. Both species co-occurred with motorised and non-motorised recreation, however, grizzly bears reduced their intensity of use of sites with motorised recreation present. Black bears showed higher temporal activity overlap with recreational activity than grizzly bears, however differences in bear daily activity patterns between sites with and without motorised and non-motorised recreation were not significant. Reduced intensity of use by grizzly bears of sites where motorised recreation was present is a concern given off-road recreation is becoming increasingly popular in North America, and can negatively influence grizzly bear recovery by reducing foraging opportunities near or on trails. Camera traps and multi-species occurrence models offer non-invasive methods for identifying how habitat use by animals changes relative to sympatric species, including humans. These conclusions emphasise the need for integrated land-use planning, access management, and grizzly bear conservation efforts to consider the implications of continued access for motorised recreation in areas occupied by grizzly bears.


Assuntos
Recreação , Ursidae , Alberta , Animais , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...