Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36838951

RESUMO

Chitosan-based nanoparticles (chitosan-based nanocomposites; chitosan nanoparticles; ChNPs) are promising materials that are receiving a lot of attention in the last decades. ChNPs have great potential as nanocarriers. They are able to encapsulate drugs as well as active compounds and deliver them to a specific place in the body providing a controlled release. In the article, an overview has been made of the most frequently used preparation methods, and the developed applications in medicine. The presentation of the most important information concerning ChNPs, especially chitosan's properties in drug delivery systems (DDS), as well as the method of NPs production was quoted. Additionally, the specification and classification of the NPs' morphological features determined their application together with the methods of attaching drugs to NPs. The latest scientific reports of the DDS using ChNPs administered orally, through the eye, on the skin and transdermally were taken into account.


Assuntos
Quitosana , Nanopartículas , Sistemas de Liberação de Medicamentos , Portadores de Fármacos
2.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615624

RESUMO

The interactions of the functional additives SPS (bis-(sodium-sulfopropyl)-disulfide) and polyethylene glycol (PEG) in the presence of chloride ions were studied by time-of-flight secondary-ion mass spectrometry (TOF-SIMS) in combination with cyclic voltammetry measurements (CV). The PEG, thiolate, and chloride surface coverages were estimated and discussed in terms of their electrochemical suppressing/accelerating abilities. The conformational influence of both the gauche/trans thiolate molecules, as well as around C-C and C-O of PEG, on the electrochemical properties were discussed. The contribution of the hydrophobic interaction of -CH2-CH2- of PEG with chloride ions was only slightly reduced after the addition of SPS, while the contribution of Cu-PEG adducts diminished strongly. SPS and PEG demonstrated significant synergy by significant co-adsorption. It was shown that the suppressing abilities of PEG that rely on forming stable Cu-PEG adducts, identified in the form C2H4O2Cu+ and C3H6OCu+, were significantly reduced after the addition of SPS. The major role of thiolate molecules adsorbed on a copper surface in reducing the suppressing abilities of PEG rely on the efficient capture of Cu2+ ions, diminishing the available copper ions for the ethereal oxygen of PEG.


Assuntos
Cobre , Polietilenoglicóis , Polietilenoglicóis/química , Sódio , Cloretos , Dissulfetos , Espectrometria de Massa de Íon Secundário
3.
Molecules ; 27(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36500210

RESUMO

Interactions of functional additives SPS (bis-(sodium-sulfopropyl)-disulfide), MPS (3-Mercapto-1-Propanesulfonate), and Cl accumulated and incorporated on/into a copper electrodeposited layer were studied using time-of-flight secondary-ion mass spectrometry (TOF-SIMS) in combination with cyclic voltammetry measurements (CV). It was shown that the Cl and MPS surface coverage is dependent on the applied overpotential and concentration of Cl, SPS, or MPS in the solution. Detailed discussion on the mechanism of yielding CH2SO3-, C3H5SO3-, CuSC3H6SO3-, and CuS- fragments and their assignment to the gauche or trans conformation was proposed. The mechanism of the process of incorporation and re-adsorption of MPS on/into a copper surface under electrochemical conditions without and with chloride ions and its impact on electrochemical properties was proposed. Moreover, it was shown that the presence of chloride ions, the ratio gauche/trans of MPS molecules, as well as the ratio chloride/thiols demonstrate a high impact on the accelerating abilities. Comparative studies conducted under open circuit potential conditions on the nitinol and copper substrate allowed for the identification of specific reactions/interactions of MPS, or SPS and Cl ions on the nitinol and copper surface.


Assuntos
Cobre , Dissulfetos , Cobre/química , Cloretos/química , Sódio , Espectrometria de Massa de Íon Secundário/métodos
4.
Biomater Adv ; 138: 212934, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35913237

RESUMO

The main aim of the study was to determine the effect of two polysaccharides: chitosan (Ch) and hyaluronic acid (HA), and/or titanium dioxide (TiO2) on the structure and behaviour of the 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) membrane. To achieve this goal the surface pressure as a function of the area per molecule (π-A) isotherm for the phospholipid monolayer was recorded. The shape of the π-A isotherms and compression-decompression cycles, as well as the compression modulus values, were analysed in terms of biocompatibility. Besides, morphology and thickness of the phospholipid layers obtained by means of Brewster angle microscope at different π, were determined. The obtained results show that both polysaccharides Ch, HA, as well inorganic TiO2 affect slightly the structure of the DOPC monolayer but do not disrupt it. Their presence brings no typical arrangements of both the polar heads and tails of DOPC molecules at the interface.


Assuntos
Quitosana , Quitosana/farmacologia , Glicerilfosforilcolina , Ácido Hialurônico , Fosfatidilcolinas , Fosfolipídeos/química , Titânio
5.
Molecules ; 27(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35056656

RESUMO

The aim of the study was to determine the bactericidal properties of popular medical, pharmaceutical, and cosmetic ingredients, namely chitosan (Ch), hyaluronic acid (HA), and titanium dioxide (TiO2). The characteristics presented in this paper are based on the Langmuir monolayer studies of the model biological membranes formed on subphases with these compounds or their mixtures. To prepare the Langmuir film, 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DPPG) phospholipid, which is the component of most bacterial membranes, as well as biological material-lipids isolated from bacteria Escherichia coli and Staphylococcus aureus were used. The analysis of the surface pressure-mean molecular area (π-A) isotherms, compression modulus as a function of surface pressure, CS-1 = f(π), relative surface pressure as a function of time, π/π0 = f(t), hysteresis loops, as well as structure visualized using a Brewster angle microscope (BAM) shows clearly that Ch, HA, and TiO2 have antibacterial properties. Ch and TiO2 mostly affect S. aureus monolayer structure during compression. They can enhance the permeability of biological membranes leading to the bacteria cell death. In turn, HA has a greater impact on the thickness of E. coli film.


Assuntos
Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Lipídeos de Membrana/química , Fosfatidilgliceróis/química , Polissacarídeos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Titânio/farmacologia , Quelantes/farmacologia , Quitosana/farmacologia , Ácido Hialurônico/farmacologia , Propriedades de Superfície , Viscossuplementos/farmacologia
6.
Adv Colloid Interface Sci ; 294: 102451, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34098385

RESUMO

In recent decades synthetic polymers have gained increasing popularity, and nowadays they are an integral part of people's daily lives. In addition, owing to their competitive advantage and being susceptible to modification, polymers have stimulated the fast development of innovative technologies in many areas of science. Biopolymers are of particular interest in various branches of medicine, such as implantology of bones, cartilage and skin tissues as well as blood vessels. Biomaterials with such specific applications must have appropriate mechanical and strength characteristics and above all they must be compatible with the surrounding tissues, human blood and its components, i.e. exhibit high hemo- and biocompatibility, low or no thrombo- and carcinogenicity, foreign body response (host response), appropriate osteoconduction, osteoinduction and mineralization. For biocompatibility improvement many surface treatment techniques have been utilized leading to fabricate the polymer biomaterials of required properties, also at nanoscale. This review paper discusses the most important physicochemical and biological factors that affect the biocompatibility, thus the reaction of the living organism after insertion of the polymer-based biomaterials, i.e. surface modification and/or degradation, surface composition (functional groups and charge), size and shapes, hydrophilic-hydrophobic character, wettability and surface free energy, topography (roughness, stiffness), crystalline and amorphous structure, nanostructure, cell adhesion and proliferation, cellular uptake. Particularly, the application of polysaccharides (chitosan, cellulose, starch) in the tissue engineering is emphasized.


Assuntos
Materiais Biocompatíveis , Polímeros , Biopolímeros , Humanos , Interações Hidrofóbicas e Hidrofílicas , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...