Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 65(18): 12256-12272, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36044544

RESUMO

Tolerance development caused by dopamine replacement with l-DOPA and therapeutic drawbacks upon activation of dopaminergic receptors with orthosteric agonists reveal a significant unmet need for safe and effective treatment of Parkinson's disease. In search for selective modulators of the D1 receptor, the screening of a chemical library and subsequent medicinal chemistry program around an identified hit resulted in new synthetic compound 26 [UCM-1306, 2-(fluoromethoxy)-4'-(S-methanesulfonimidoyl)-1,1'-biphenyl] that increases the dopamine maximal effect in a dose-dependent manner in human and mouse D1 receptors, is inactive in the absence of dopamine, modulates dopamine affinity for the receptor, exhibits subtype selectivity, and displays low binding competition with orthosteric ligands. The new allosteric modulator potentiates cocaine-induced locomotion and enhances l-DOPA recovery of decreased locomotor activity in reserpinized mice after oral administration. The behavior of compound 26 supports the interest of a positive allosteric modulator of the D1 receptor as a promising therapeutic approach for Parkinson's disease.


Assuntos
Cocaína , Doença de Parkinson , Animais , Compostos de Bifenilo , Dopamina/metabolismo , Dopaminérgicos , Agonistas de Dopamina/farmacologia , Humanos , Indazóis , Levodopa , Ligantes , Camundongos , Nitrofuranos , Doença de Parkinson/tratamento farmacológico , Receptores Dopaminérgicos , Receptores de Dopamina D1/agonistas
2.
Biomedicines ; 10(2)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35203621

RESUMO

Alcohol use disorder (AUD) is highly prevalent, and over 50% of AUD patients also suffer major depressive disorders. Selective 5-HT reuptake inhibitors (SSRIs) can reduce rodent ethanol drinking but exert modest clinical efficacy in alcoholic individuals. Finding new pharmacological strategies that could modulate alcohol consumption and depression is necessary. We have analyzed the effect of Galanin (1-15) [GAL(1-15)] on escitalopram (ESC)-mediated effect in alcohol consumption using the alcohol self-administration test, the nuclei involved in the effect, and whether GAL(1-15) + ESC modulated the response in despair or anxiety tests in animals under chronic alcohol intake. GAL(1-15) + ESC combination substantially reduced alcohol intake in the alcohol self-administration test and, moreover, enhanced the reduction of reward capacity of ESC on different reinforcers such as sucrose or saccharine. GAL(1-15) + ESC coadministration significantly decreases the number of C-Fos-IR TH cell bodies in the VTA, and PCA analysis suggests that one functional network, including VTA, RMTg and DR, is involved in these effects. Significantly in rats with chronic alcohol consumption, GAL(1-15) reversed adverse ESC-mediated effects in the depression-related behavioural test and forced swimming test. The results open up the possibility of using GAL(1-15) in combination with the SSRI Escitalopram as a novel strategy in AUD comorbidity with depression.

3.
Physiol Behav ; 240: 113542, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34332975

RESUMO

Repeated cocaine exposure induces lasting neurobehavioral adaptations such as cognitive decline in animal models. However, persistent changes in spontaneous -unconditioned- motor and exploratory responses are scarcely reported. In this study, mice were administered with cocaine (20 mg/kg/day) or vehicle for 12 consecutive days. After 24 days of drug abstinence, a behavioral assessment was carried out in drug-free conditions and in unfamiliar environments (i.e. no cocaine-associated cues were presented). The cocaine-withdrawn mice showed cognitive deficits in spontaneous alternation behavior and place recognition memory. Importantly, they also displayed hyperlocomotion, increased rearing activity and altered exploratory patterns in different tasks. In the forced swimming test, they were more active (struggled/climbed more) when trying to escape from the water albeit showing normal immobility behavior. In conclusion, in addition to cognitive deficits, chronic cocaine in rodents may induce long-lasting alterations in exploratory activity and psychomotor activation that are triggered even in absence of drug-related stimuli.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Disfunção Cognitiva , Animais , Ansiedade , Comportamento Animal , Cocaína/toxicidade , Disfunção Cognitiva/induzido quimicamente , Aprendizagem em Labirinto , Camundongos , Natação
4.
Redox Biol ; 46: 102095, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34418603

RESUMO

Oxidative distress and mitochondrial dysfunction, are key factors involved in the pathophysiology of Parkinson's disease (PD). The pleiotropic hormone insulin-like growth factor II (IGF-II) has shown neuroprotective and antioxidant effects in some neurodegenerative diseases. In this work, we demonstrate the protective effect of IGF-II against the damage induced by 1-methyl-4-phenylpyridinium (MPP+) in neuronal dopaminergic cell cultures and a mouse model of progressive PD. In the neuronal model, IGF-II counteracts the oxidative distress produced by MPP + protecting dopaminergic neurons. Improved mitochondrial function, increased nuclear factor (erythroid-derived 2)-like2 (NRF2) nuclear translocation along with NRF2-dependent upregulation of antioxidative enzymes, and modulation of mammalian target of rapamycin (mTOR) signalling pathway were identified as mechanisms leading to neuroprotection and the survival of dopaminergic cells. The neuroprotective effect of IGF-II against MPP + -neurotoxicity on dopaminergic neurons depends on the specific IGF-II receptor (IGF-IIr). In the mouse model, IGF-II prevents behavioural dysfunction and dopaminergic nigrostriatal pathway degeneration and mitigates neuroinflammation induced by MPP+. Our work demonstrates that hampering oxidative stress and normalising mitochondrial function through the interaction of IGF-II with its specific IGF-IIr are neuroprotective in both neuronal and mouse models. Thus, the modulation of the IGF-II/IGF-IIr signalling pathway may be a useful therapeutic approach for the prevention and treatment of PD.


Assuntos
Doença de Parkinson , 1-Metil-4-fenilpiridínio/toxicidade , Animais , Neurônios Dopaminérgicos , Fator de Crescimento Insulin-Like II , Camundongos , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico
5.
Brain Struct Funct ; 226(5): 1479-1495, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33792787

RESUMO

Defects in GABAergic function can cause anxiety- and depression-like behaviors among other neuropsychiatric disorders. Therapeutic strategies using the transplantation of GABAergic interneuron progenitors derived from the medial ganglionic eminence (MGE) into the adult hippocampus reversed the symptomatology in multiple rodent models of interneuron-related pathologies. In turn, the lysophosphatidic acid receptor LPA1 has been reported to be essential for hippocampal function. Converging evidence suggests that deficits in LPA1 receptor signaling represent a core feature underlying comparable hippocampal dysfunction and behaviors manifested in common neuropsychiatric conditions. Here, we first analyzed the GABAergic interneurons in the hippocampus of wild-type and maLPA1-null mice, lacking the LPA1 receptor. Our data revealed a reduction in the number of neurons expressing GABA, calcium-binding proteins, and neuropeptides such as somatostatin and neuropeptide Y in the hippocampus of maLPA1-null mice. Then, we used interneuron precursor transplants to test links between hippocampal GABAergic interneuron deficit, cell-based therapy, and LPA1 receptor-dependent psychiatric disease-like phenotypes. For this purpose, we transplanted MGE-derived interneuron precursors into the adult hippocampus of maLPA1-null mice, to test their effects on GABAergic deficit and behavioral symptoms associated with the absence of the LPA1 receptor. Transplant studies in maLPA1-null mice showed that grafted cells were able to restore the hippocampal host environment, decrease the anxiety-like behaviors and neutralize passive coping, with no abnormal effects on motor activity. Furthermore, grafted MGE-derived cells maintained their normal differentiation program. These findings reinforce the use of cell-based strategies for brain disorders and suggest that the LPA1 receptor represents a potential target for interneuron-related neuropsychiatric disorders.


Assuntos
Ansiedade , Interneurônios , Adaptação Psicológica , Animais , Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Camundongos , Camundongos Knockout , Receptores de Ácidos Lisofosfatídicos/genética
6.
Addict Biol ; 24(3): 458-470, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29480526

RESUMO

Erasing memories of cocaine-stimuli associations might have important clinical implications for addiction therapy. Stimulating hippocampal plasticity by enhancing adult hippocampal neurogenesis (AHN) is a promising strategy because the addition of new neurons may not only facilitate new learning but also modify previous connections and weaken retrograde memories. To investigate whether increasing AHN prompted the forgetting of previous contextual cocaine associations, mice trained in a cocaine-induced conditioned place preference (CPP) paradigm were administered chronic intracerebroventricular infusions of lysophosphatidic acid (LPA, an endogenous lysophospholipid with pro-neurogenic actions), ki16425 (an LPA1/3 receptor antagonist) or a vehicle solution, and they were tested 23 days later for CPP retention and extinction. The results of immunohistochemical experiments showed that the LPA-treated mice exhibited reduced long-term CPP retention and an approximately twofold increase in the number of adult-born hippocampal cells that differentiated into mature neurons. Importantly, mediation analyses confirmed a causal role of AHN in reducing CPP maintenance. In contrast, the ki16425-treated mice displayed aberrant responses, with initially decreased CPP retention that progressively increased across the extinction sessions, leading to no effect on AHN. The pharmacological treatments did not affect locomotion or general exploratory or anxiety-like responses. In a second experiment, normal and LPA1 -receptor-deficient mice were acutely infused with LPA, which revealed that LPA1 -mediated signaling was required for LPA-induced proliferative actions. These results suggest that the LPA/LPA1 pathway acts as a potent in vivo modulator of AHN and highlight the potential usefulness of pro-AHN strategies to treat aberrant cognition in those addicted to cocaine.


Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Hipocampo/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Memória/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Animais , Condicionamento Psicológico/efeitos dos fármacos , Isoxazóis/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios , Propionatos/farmacologia , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
7.
Neurosci Biobehav Rev ; 106: 23-48, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30481530

RESUMO

Drug addiction is a chronic and relapsing disorder in which repeated drug exposure compromises brain neuroplasticity. Brain areas normally involved in learning and goal-directed behaviors become corrupted, which may lead to cognitive deficits that coexist with other addiction symptoms and predict a worse treatment outcome. New learning experiences that are not motivated by drugs may improve both cognitive deficits and drug-induced symptoms by promoting adaptive neuroplastic changes that could alleviate or reverse those involved in addiction. The present review will focus on whether potentiating healthy cognitive function, either by formal cognitive training or non-drug related environmental experiences, could exert beneficial effects in the therapeutics of addiction. Although additional studies are needed, the available clinical and preclinical evidence suggests that cognitive stimulation may provide a valuable adjuvant intervention in drug addiction.


Assuntos
Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/terapia , Remediação Cognitiva , Plasticidade Neuronal/fisiologia , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/terapia , Disfunção Cognitiva/etiologia , Humanos , Transtornos Relacionados ao Uso de Substâncias/complicações
8.
Neurobiol Learn Mem ; 151: 35-42, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29608953

RESUMO

Learning experiences are potent modulators of adult hippocampal neurogenesis (AHN). However, the vast majority of findings on the learning-induced regulation of AHN derive from aversively-motivated tasks, mainly the water maze paradigm, in which stress is a confounding factor that affects the AHN outcome. Currently, little is known regarding the effect of appetitively-motivated training on AHN. Hence we studied how spatial learning to find food rewards in a hole-board maze modulates AHN (cell proliferation and immature neurons) and AHN-related hippocampal neuroplasticity markers (BDNF, IGF-II and CREB phosphorylation) in mice. The 'Trained' mice were tested for both spatial reference and working memory and compared to 'Pseudotrained' mice (exposed to different baited holes in each session, thus avoiding the reference memory component of the task) and 'Control' mice (exposed to the maze without rewards). In contrast to Pseudotrained and Control mice, the number of proliferating hippocampal cells were reduced in Trained mice, but they notably increased their population of immature neurons assessed by immunohistochemistry. This evidence shows that hole-board spatial reference learning diminishes cell proliferation in favor of enhancing young neurons' survival. Interestingly, the enhanced AHN in the Trained mice (specifically in the suprapyramidal blade) positively correlated with their reference memory performance, but not with their working memory. Furthermore, the Trained animals increased the hippocampal protein expression of all the neuroplasticity markers analyzed by western blot. Results show that the appetitively-motivated hole-board task is a useful paradigm to potentiate and/or investigate AHN and hippocampal plasticity minimizing aversive variables such as fear or stress.


Assuntos
Comportamento Apetitivo/fisiologia , Hipocampo/fisiologia , Memória de Curto Prazo/fisiologia , Neurogênese , Neurônios/fisiologia , Aprendizagem Espacial/fisiologia , Animais , Masculino , Camundongos Endogâmicos C57BL , Motivação/fisiologia , Plasticidade Neuronal , Recompensa
9.
Front Psychiatry ; 9: 26, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29491842

RESUMO

AIMS: Despite alcohol being the most often used addictive substance among addicted patients, use of other substances such as cocaine has increased over recent years, and the combination of both drugs aggravates health impairment and complicates clinical assessment. The aim of this study is to identify and characterize heterogeneous subgroups of cocaine- and alcohol-addicted patients with common characteristics based on substance use disorders, psychiatric comorbidity and impulsivity. METHODS: A total of 214 subjects with cocaine and/or alcohol use disorders were recruited from outpatient treatment programs and clinically assessed. A latent class analysis was used to establish phenotypic categories according to diagnosis of cocaine and alcohol use disorders, mental disorders, and impulsivity scores. Relevant variables were examined in the latent classes (LCs) using correlation and analyses of variance and covariance. RESULTS: Four LCs of addicted patients were identified: Class 1 (45.3%) formed by alcohol-dependent patients exhibiting lifetime mood disorder diagnosis and mild impulsivity; Class 2 (14%) formed mainly by lifetime cocaine use disorder patients with low probability of comorbid mental disorders and mild impulsivity; Class 3 (10.7%) formed by cocaine use disorder patients with elevated probability to course with lifetime anxiety, early and personality disorders, and greater impulsivity scores; and Class 4 (29.9%) formed mainly by patients with alcohol and cocaine use disorders, with elevated probability in early and personality disorders and elevated impulsivity. Furthermore, there were significant differences among classes in terms of Diagnostic and Statistical Manual of Mental Disorders-4th Edition-Text Revision criteria for abuse and dependence: Class 3 showed more criteria for cocaine use disorders than other classes, while Class 1 and Class 4 showed more criteria for alcohol use disorders. CONCLUSION: Cocaine- and alcohol-addicted patients who were grouped according to diagnosis of substance use disorders, psychiatric comorbidity, and impulsivity show different clinical and sociodemographic variables. Whereas mood and anxiety disorders are more prevalent in alcohol-addicted patients, personality disorders are associated with cocaine use disorders and diagnosis of comorbid substance use disorders. Notably, increased impulsivity is a distinctive characteristic of patients with severe cocaine use disorder and comorbid personality disorders. Psychiatric disorders and impulsivity should be considered for improving the stratification of addicted patients with shared clinical and sociodemographic characteristics to select more appropriate treatments.

10.
Neuropharmacology ; 133: 189-201, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29378212

RESUMO

The systemic administration of lysophosphatidic acid (LPA) LPA1/3 receptor antagonists is a promising clinical tool for cancer, sclerosis and fibrosis-related diseases. Since LPA1 receptor-null mice engage in increased ethanol consumption, we evaluated the effects of systemic administration of an LPA1/3 receptor antagonist (intraperitoneal ki16425, 20 mg/kg) on ethanol-related behaviors as well as on brain and plasma correlates. Acute administration of ki16425 reduced motivation for ethanol but not for saccharine in ethanol self-administering Wistar rats. Mouse experiments were conducted in two different strains. In Swiss mice, ki16425 treatment reduced both ethanol-induced sedation (loss of righting reflex, LORR) and ethanol reward (escalation in ethanol consumption and ethanol-induced conditioned place preference, CPP). Furthermore, in the CPP-trained Swiss mice, ki16425 prevented the effects of ethanol on basal c-Fos expression in the medial prefrontal cortex and on adult neurogenesis in the hippocampus. In the c57BL6/J mouse strain, however, no effects of ki16425 on LORR or voluntary drinking were observed. The c57BL6/J mouse strain was then evaluated for ethanol withdrawal symptoms, which were attenuated when ethanol was preceded by ki16425 administration. In these animals, ki16425 modulated the expression of glutamate-related genes in brain limbic regions after ethanol exposure; and peripheral LPA signaling was dysregulated by either ki16425 or ethanol. Overall, these results suggest that LPA1/3 receptor antagonists might be a potential new class of drugs that are suitable for treating or preventing alcohol use disorders. A pharmacokinetic study revealed that systemic ki16425 showed poor brain penetration, suggesting the involvement of peripheral events to explain its effects.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Isoxazóis/farmacologia , Propionatos/farmacologia , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Animais , Comportamento de Escolha/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Relação Dose-Resposta a Droga , Etanol/administração & dosagem , Alucinógenos/farmacologia , Dietilamida do Ácido Lisérgico/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar , Receptores de Ácidos Lisofosfatídicos/metabolismo , Reflexo/efeitos dos fármacos , Sacarina/administração & dosagem , Autoadministração
11.
Pharmacol Biochem Behav ; 166: 1-12, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29337083

RESUMO

Cocaine addiction is a chronically relapsing disorder characterized by compulsive drug-seeking and drug-taking behaviors. Previous studies have demonstrated that cocaine, as well as other drugs of abuse, alters the levels of lipid-based signaling molecules, such as N-acylethanolamines (NAEs). Moreover, brain levels of NAEs have shown sensitivity to cocaine self-administration and extinction training in rodents. Given this background, the aim of this study was to investigate the effects of repeated or acute administration of palmitoylethanolamide (PEA), an endogenous NAE, on psychomotor sensitization and cocaine-induced contextual conditioning. To this end, the potential ability of repeated PEA administration (1 or 10 mg/kg, i.p.) to modulate the acquisition of cocaine-induced behavioral sensitization (BS) and conditioned place preference (CPP) was assessed in male C57BL/6J mice. In addition, the expression of cocaine-induced BS and CPP following acute PEA administration were also studied. Results showed that repeated administration of both doses of PEA were able to block the acquisition of cocaine-induced BS. Furthermore, acute administration of both doses of PEA was able to abolish the expression of BS, while the highest dose also abolished the expression of cocaine-induced CPP. Taken together, these results indicate that exogenous administration of PEA attenuated psychomotor sensitization, while the effect of PEA in cocaine-induced CPP depended on whether PEA was administered repeatedly or acutely. These findings could be relevant to understand the role that NAEs play in processes underlying the development and maintenance of cocaine addiction.


Assuntos
Acatisia Induzida por Medicamentos/prevenção & controle , Analgésicos/administração & dosagem , Cocaína/administração & dosagem , Condicionamento Psicológico/efeitos dos fármacos , Etanolaminas/administração & dosagem , Ácidos Palmíticos/administração & dosagem , Desempenho Psicomotor/efeitos dos fármacos , Acatisia Induzida por Medicamentos/psicologia , Amidas , Animais , Cocaína/toxicidade , Condicionamento Psicológico/fisiologia , Inibidores da Captação de Dopamina/administração & dosagem , Inibidores da Captação de Dopamina/toxicidade , Relação Dose-Resposta a Droga , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Desempenho Psicomotor/fisiologia
12.
Biochem Pharmacol ; 141: 100-117, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28483462

RESUMO

After discovering that addictive drugs alter adult neurogenesis, the potential role of adult-born hippocampal neurons in drug addiction has become a promising research field, in which cocaine is the most frequently investigated drug. Although a substantial amount of pre-clinical evidence has accumulated, additional studies are required to reveal the mechanisms by which cocaine modulates adult hippocampal neurogenesis (AHN) and determine whether these adult-born neurons have a role in cocaine-related behaviors, such as cocaine-mediated cognitive symptoms. First, this review will summarize the cocaine-induced alterations in a number of neurobiological factors (neurotransmitters, neurotrophins, glucocorticoids, inflammatory mediators) that likely regulate both hippocampal-dependent learning and adult hippocampal neurogenesis after cocaine exposure. A separate section will provide a detailed review of the available literature that challenges the common view that cocaine reduces adult hippocampal neurogenesis. In fact, cocaine has a short-term anti-proliferative role, but the young adult-born neurons are apparently spared, or even enhanced, following certain cocaine protocols. Thus, we will try to reconcile this evidence with the hippocampal-dependent cognitive symptoms that are typically observed in cocaine addicts, and we will propose new directions for future studies to test the relevant hypothesis. Based on the evidence presented here, the regulation of adult hippocampal neurogenesis might be one of the many mechanisms by which cocaine sculpts hippocampus-dependent learning.


Assuntos
Células-Tronco Adultas/efeitos dos fármacos , Cocaína/farmacologia , Transtornos Cognitivos/induzido quimicamente , Hipocampo/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Células-Tronco Adultas/fisiologia , Animais , Cocaína/toxicidade , Transtornos Relacionados ao Uso de Cocaína/patologia , Transtornos Cognitivos/patologia , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia
13.
Dis Model Mech ; 10(3): 323-336, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28138095

RESUMO

Cocaine addiction disorder is notably aggravated by concomitant cognitive and emotional pathology that impedes recovery. We studied whether a persistent cognitive/emotional dysregulation in mice withdrawn from cocaine holds a neurobiological correlate within the hippocampus, a limbic region with a key role in anxiety and memory but that has been scarcely investigated in cocaine addiction research. Mice were submitted to a chronic cocaine (20 mg/kg/day for 12 days) or vehicle treatment followed by 44 drug-free days. Some mice were then assessed on a battery of emotional (elevated plus-maze, light/dark box, open field, forced swimming) and cognitive (object and place recognition memory, cocaine-induced conditioned place preference, continuous spontaneous alternation) behavioral tests, while other mice remained in their home cage. Relevant hippocampal features [basal c-Fos activity, GABA+, parvalbumin (PV)+ and neuropeptide Y (NPY)+ interneurons and adult neurogenesis (cell proliferation and immature neurons)] were immunohistochemically assessed 73 days after the chronic cocaine or vehicle protocol. The cocaine-withdrawn mice showed no remarkable exploratory or emotional alterations but were consistently impaired in all the cognitive tasks. All the cocaine-withdrawn groups, independent of whether they were submitted to behavioral assessment or not, showed enhanced basal c-Fos expression and an increased number of GABA+ cells in the dentate gyrus. Moreover, the cocaine-withdrawn mice previously submitted to behavioral training displayed a blunted experience-dependent regulation of PV+ and NPY+ neurons in the dentate gyrus, and neurogenesis in the hippocampus. Results highlight the importance of hippocampal neuroplasticity for the ingrained cognitive deficits present during chronic cocaine withdrawal.


Assuntos
Adaptação Fisiológica , Cocaína/efeitos adversos , Hipocampo/patologia , Interneurônios/patologia , Transtornos da Memória/complicações , Neurogênese , Síndrome de Abstinência a Substâncias/complicações , Ácido gama-Aminobutírico/metabolismo , Envelhecimento/patologia , Animais , Comportamento Animal , Transtornos Cognitivos/complicações , Transtornos Cognitivos/fisiopatologia , Giro Denteado/patologia , Giro Denteado/fisiopatologia , Emoções , Comportamento Exploratório , Hipocampo/fisiopatologia , Masculino , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/metabolismo , Síndrome de Abstinência a Substâncias/fisiopatologia
14.
Behav Brain Res ; 298(Pt B): 35-43, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26523857

RESUMO

The identification of behavioral traits that could predict an individual's susceptibility to engage in cocaine addiction is relevant for understanding and preventing this disorder, but investigations of cocaine addicts rarely allow us to determinate whether their behavioral attributes are a cause or a consequence of drug use. To study the behaviors that predict cocaine vulnerability, male C57BL/6J mice were examined in a battery of tests (the elevated plus maze, hole-board, novelty preference in the Y-Maze, episodic-like object recognition and forced swimming) prior to training in a cocaine-conditioned place preference (CPP) paradigm to assess the reinforcing value of the drug. In a second study, the anatomical basis of high and low CPP in the mouse brain was investigated by studying the number of neurons (neuronal nuclei-positive) in two addiction-related limbic regions (the medial prefrontal cortex and the basolateral amygdala) and the number of dopaminergic neurons (tyrosine hydroxylase-positive) in the ventral tegmental area by immunohistochemistry and stereology. Correlational analyses revealed that CPP behavior was successfully predicted by anxiety-like measures in the elevated plus maze (i.e., the more anxious mice showed more preference for the cocaine-paired compartment) but not by the other behaviors analyzed. In addition, increased numbers of neurons were found in the basolateral amygdala of the high CPP mice, a key brain center for anxiety and fear responses. The results support the theory that anxiety is a relevant factor for cocaine vulnerability, and the basolateral amygdala is a potential neurobiological substrate where both anxiety and cocaine vulnerability could overlap.


Assuntos
Ansiedade/fisiopatologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Cocaína/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Neurônios/efeitos dos fármacos , Animais , Complexo Nuclear Basolateral da Amígdala/patologia , Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Contagem de Células , Transtornos Relacionados ao Uso de Cocaína/diagnóstico , Transtornos Relacionados ao Uso de Cocaína/patologia , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Neurônios/patologia , Neurônios/fisiologia , Prognóstico , Comportamento Espacial/efeitos dos fármacos , Comportamento Espacial/fisiologia
15.
Addict Biol ; 21(3): 575-88, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25870909

RESUMO

We investigated the role of adult hippocampal neurogenesis in cocaine-induced conditioned place preference (CPP) behaviour and the functional brain circuitry involved. Adult hippocampal neurogenesis was pharmacologically reduced with temozolomide (TMZ), and mice were tested for cocaine-induced CPP to study c-Fos expression in the hippocampus and in extrahippocampal addiction-related areas. Correlational and multivariate analysis revealed that, under normal conditions, the hippocampus showed widespread functional connectivity with other brain areas and strongly contributed to the functional brain module associated with CPP expression. However, the neurogenesis-reduced mice showed normal CPP acquisition but engaged an alternate brain circuit where the functional connectivity of the dentate gyrus was notably reduced and other areas (the medial prefrontal cortex, accumbens and paraventricular hypothalamic nucleus) were recruited instead of the hippocampus. A second experiment unveiled that mice acquiring the cocaine-induced CPP under neurogenesis-reduced conditions were delayed in extinguishing their drug-seeking behaviour. But if the inhibited neurons were generated after CPP acquisition, extinction was not affected but an enhanced long-term CPP retention was found, suggesting that some roles of the adult-born neurons may differ depending on whether they are generated before or after drug-contextual associations are established. Importantly, cocaine-induced reinstatement of CPP behaviour was increased in the TMZ mice, regardless of the time of neurogenesis inhibition. The results show that adult hippocampal neurogenesis sculpts the addiction-related functional brain circuits, and reduction of the adult-born hippocampal neurons increases cocaine seeking in the CPP model.


Assuntos
Encéfalo/efeitos dos fármacos , Comportamento de Escolha/efeitos dos fármacos , Cocaína/farmacologia , Condicionamento Psicológico , Inibidores da Captação de Dopamina/farmacologia , Neurogênese/efeitos dos fármacos , Animais , Antineoplásicos Alquilantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Extinção Psicológica , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Análise Multivariada , Vias Neurais/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Temozolomida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...