Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(10): e10585, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37886430

RESUMO

Global climatic changes expected in the next centuries are likely to cause unparalleled vegetation disturbances, which in turn impact ecosystem services. To assess the significance of disturbances, it is necessary to characterize and understand typical natural vegetation variability on multi-decadal timescales and longer. We investigate this in the Holocene vegetation by examining a taxonomically harmonized and temporally standardized global fossil pollen dataset. Using principal component analysis, we characterize the variability in pollen assemblages, which are a proxy for vegetation composition, and derive timescale-dependent estimates of variability using the first-order Haar structure function. We find, on average, increasing fluctuations in vegetation composition from centennial to millennial timescales, as well as spatially coherent patterns of variability. We further relate these variations to pairwise comparisons between biome classes based on vegetation composition. As such, higher variability is identified for open-land vegetation compared to forests. This is consistent with the more active fire regimes of open-land biomes fostering variability. Needleleaf forests are more variable than broadleaf forests on shorter (centennial) timescales, but the inverse is true on longer (millennial) timescales. This inversion could also be explained by the fire characteristics of the biomes as fire disturbances would increase vegetation variability on shorter timescales, but stabilize vegetation composition on longer timecales by preventing the migration of less fire-adapted species.

2.
Paleoceanogr Paleoclimatol ; 34(5): 755-773, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31423481

RESUMO

Foraminifera are commonly used in paleoclimate reconstructions as they occur throughout the world's oceans and are often abundantly preserved in the sediments. Traditionally, foraminifera-based proxies like δ18O and Mg/Ca are analyzed on pooled specimens of a single species. Analysis of single specimens of foraminifera allows reconstructing climate variability on timescales related to El Niño-Southern Oscillation or seasonality. However, quantitative calibrations between the statistics of individual foraminifera analyses (IFA) and climate variability are still missing. We performed Mg/Ca and δ18O measurements on single specimens from core top sediments from different settings to better understand the signal recorded by individual foraminifera. We used three species of planktic foraminifera (Globigerinoidesruber (s.s.), T. sacculifer, and N. dutertrei) from the Indo-Pacific Warm Pool and one species (G. ruber (pink)) from the Gulf of Mexico. Mean values for the different species of Mg/Ca versus calculated δ18O temperatures agree with published calibration equations. IFA statistics (both mean and standard deviation) of Mg/Ca and δ18O between the different sites show a strong relationship indicating that both proxies are influenced by a common factor, most likely temperature variations during calcification. This strongly supports the use of IFA to reconstruct climate variability. However, our combined IFA data for the different species only show a weak relationship to seasonal and interannual temperature changes, especially when seasonal variability increases at a location. This suggests that the season and depth habitat of the foraminifera strongly affect IFA variability, such that ecology needs to be considered when reconstructing past climate variability.

3.
Nat Commun ; 10(1): 2376, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147536

RESUMO

Proxy-based reconstructions and modeling of Holocene spatiotemporal precipitation patterns for China and Mongolia have hitherto yielded contradictory results indicating that the basic mechanisms behind the East Asian Summer Monsoon and its interaction with the westerly jet stream remain poorly understood. We present quantitative reconstructions of Holocene precipitation derived from 101 fossil pollen records and analyse them with the help of a minimal empirical model. We show that the westerly jet-stream axis shifted gradually southward and became less tilted since the middle Holocene. This was tracked by the summer monsoon rain band resulting in an early-Holocene precipitation maximum over most of western China, a mid-Holocene maximum in north-central and northeastern China, and a late-Holocene maximum in southeastern China. Our results suggest that a correct simulation of the orientation and position of the westerly jet stream is crucial to the reliable prediction of precipitation patterns in China and Mongolia.

4.
Nature ; 555(7696): 402, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29542691

RESUMO

This corrects the article DOI: 10.1038/nature25454.

5.
Nature ; 554(7692): 356-359, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29400701

RESUMO

Changes in climate variability are as important for society to address as are changes in mean climate. Contrasting temperature variability during the Last Glacial Maximum and the Holocene can provide insights into the relationship between the mean state of the climate and its variability. However, although glacial-interglacial changes in variability have been quantified for Greenland, a global view remains elusive. Here we use a network of marine and terrestrial temperature proxies to show that temperature variability decreased globally by a factor of four as the climate warmed by 3-8 degrees Celsius from the Last Glacial Maximum (around 21,000 years ago) to the Holocene epoch (the past 11,500 years). This decrease had a clear zonal pattern, with little change in the tropics (by a factor of only 1.6-2.8) and greater change in the mid-latitudes of both hemispheres (by a factor of 3.3-14). By contrast, Greenland ice-core records show a reduction in temperature variability by a factor of 73, suggesting influences beyond local temperature or a decoupling of atmospheric and global surface temperature variability for Greenland. The overall pattern of reduced variability can be explained by changes in the meridional temperature gradient, a mechanism that points to further decreases in temperature variability in a warmer future.

6.
Nat Commun ; 7: 11967, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27338025

RESUMO

Broad-scale climate control of vegetation is widely assumed. Vegetation-climate lags are generally thought to have lasted no more than a few centuries. Here our palaeoecological study challenges this concept over glacial-interglacial timescales. Through multivariate analyses of pollen assemblages from Lake El'gygytgyn, Russian Far East and other data we show that interglacial vegetation during the Plio-Pleistocene transition mainly reflects conditions of the preceding glacial instead of contemporary interglacial climate. Vegetation-climate disequilibrium may persist for several millennia, related to the combined effects of permafrost persistence, distant glacial refugia and fire. In contrast, no effects from the preceding interglacial on glacial vegetation are detected. We propose that disequilibrium was stronger during the Plio-Pleistocene transition than during the Mid-Pliocene Warm Period when, in addition to climate, herbivory was important. By analogy to the past, we suggest today's widespread larch ecosystem on permafrost is not in climate equilibrium. Vegetation-based reconstructions of interglacial climates used to assess atmospheric CO2-temperature relationships may thus yield misleading simulations of past global climate sensitivity.

7.
Proc Natl Acad Sci U S A ; 111(47): 16682-7, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385623

RESUMO

The variability of sea surface temperatures (SSTs) at multidecadal and longer timescales is poorly constrained, primarily because instrumental records are short and proxy records are noisy. Through applying a new noise filtering technique to a global network of late Holocene SST proxies, we estimate SST variability between annual and millennial timescales. Filtered estimates of SST variability obtained from coral, foraminifer, and alkenone records are shown to be consistent with one another and with instrumental records in the frequency bands at which they overlap. General circulation models, however, simulate SST variability that is systematically smaller than instrumental and proxy-based estimates. Discrepancies in variability are largest at low latitudes and increase with timescale, reaching two orders of magnitude for tropical variability at millennial timescales. This result implies major deficiencies in observational estimates or model simulations, or both, and has implications for the attribution of past variations and prediction of future change.

8.
Nature ; 471(7336): 91-4, 2011 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-21368830

RESUMO

The Milankovitch theory states that global climate variability on orbital timescales from tens to hundreds of thousands of years is dominated by the summer insolation at high northern latitudes. The supporting evidence includes reconstructed air temperatures in Antarctica that are nearly in phase with boreal summer insolation and out of phase with local summer insolation. Antarctic climate is therefore thought to be driven by northern summer insolation. A clear mechanism that links the two hemispheres on orbital timescales is, however, missing. We propose that key Antarctic temperature records derived from ice cores are biased towards austral winter because of a seasonal cycle in snow accumulation. Using present-day estimates of this bias in the 'recorder' system, here we show that the local insolation can explain the orbital component of the temperature record without having to invoke a link to the Northern Hemisphere. Therefore, the Antarctic ice-core-derived temperature record, one of the best-dated records of the late Pleistocene temperature evolution, cannot be used to support or contradict the Milankovitch hypothesis that global climate changes are driven by Northern Hemisphere summer insolation variations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...