Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Glob Chang Biol ; 29(23): 6727-6740, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823682

RESUMO

Conditions conducive to fires are becoming increasingly common and widespread under climate change. Recent fire events across the globe have occurred over unprecedented scales, affecting a diverse array of species and habitats. Understanding biodiversity responses to such fires is critical for conservation. Quantifying post-fire recovery is problematic across taxa, from insects to plants to vertebrates, especially at large geographic scales. Novel datasets can address this challenge. We use presence-only citizen science data from iNaturalist, collected before and after the 2019-2020 megafires in burnt and unburnt regions of eastern Australia, to quantify the effect of post-fire diversity responses, up to 18 months post-fire. The geographic, temporal, and taxonomic sampling of this dataset was large, but sampling effort and species discoverability were unevenly spread. We used rarefaction and prediction (iNEXT) with which we controlled sampling completeness among treatments, to estimate diversity indices (Hill numbers: q = 0-2) among nine broad taxon groupings and seven habitats, including 3885 species. We estimated an increase in species diversity up to 18 months after the 2019-2020 Australian megafires in regions which were burnt, compared to before the fires in burnt and unburnt regions. Diversity estimates in dry sclerophyll forest matched and likely drove this overall increase post-fire, while no taxon groupings showed clear increases inconsistent with both control treatments post-fire. Compared to unburnt regions, overall diversity across all taxon groupings and habitats greatly decreased in areas exposed to extreme fire severity. Post-fire life histories are complex and species detectability is an important consideration in all post-fire sampling. We demonstrate how fire characteristics, distinct taxa, and habitat influence biodiversity, as seen in local-scale datasets. Further integration of large-scale datasets with small-scale studies will lead to a more robust understanding of fire recovery.


Assuntos
Conservação dos Recursos Naturais , Incêndios , Animais , Austrália , Biodiversidade , Ecossistema , Florestas
2.
J Integr Plant Biol ; 64(1): 105-117, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34773376

RESUMO

The flora of China is well known for its high diversity and endemism. Identifying centers of endemism and designating conservation priorities are essential goals for biodiversity studies. However, there is no comprehensive study from a rigorous phylogenetic perspective to understand patterns of diversity and endemism and to guide biodiversity conservation in China. We conducted a spatial phylogenetic analysis of the Chinese angiosperm flora at the generic level to identify centers of neo- and paleo-endemism. Our results indicate that: (i) the majority of grid cells in China with significantly high phylogenetic endemism (PE) were located in the mountainous regions; (ii) four of the nine centers of endemism recognized, located in northern and western China, were recognized for the first time; (iii) arid and semiarid regions in Northwest China were commonly linked to significant PE, consistent with other spatial phylogenetic studies worldwide; and (iv) six high-priority conservation gaps were detected by overlaying the boundaries of China's nature reserves on all significant PE cells. Overall, we conclude that the mountains of southern and northern China contain both paleo-endemics (ancient relictual lineages) and neo-endemics (recently diverged lineages). The areas we highlight as conservation priorities are important for broad-scale planning, especially in the context of evolutionary history preservation.


Assuntos
Magnoliopsida , Biodiversidade , Evolução Biológica , China , Magnoliopsida/genética , Filogenia
3.
Evol Appl ; 14(11): 2603-2617, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34815742

RESUMO

Crop wild relatives (CWR) are an important agricultural resource as they contain genetic traits not found in cultivated species due to localized adaptation to unique environmental and climatic conditions. Phylogenetic diversity (PD) measures the evolutionary relationship of species using the tree of life. Our knowledge of CWR PD in neotropical regions is in its infancy. We analysed the distribution of CWR PD across Colombia and assessed its conservation status. The areas with the largest concentration of PD were identified as being in the northern part of the central and western Andean mountain ranges and the Pacific region. These centres of high PD were comprised of predominantly short and closely related branches, mostly of species of wild tomatoes and black peppers. In contrast, the CWR PD in the lowland ecosystems of the Amazon and Orinoquia regions had deeply diverging clades predominantly represented by long and distantly related branches (i.e. tuberous roots, grains and cacao). We categorized 50 (52.6%) of the CWR species as 'high priority', 36 as 'medium priority' and nine as 'low priority' for further ex-situ and in situ conservation actions. New areas of high PD and richness with large ex-situ gap collections were identified mainly in the northern part of the Andes of Colombia. We found that 56% of the grid cells with the highest PD values were unprotected. These baseline data could be used to create a comprehensive national strategy of CWR conservation in Colombia.

4.
iScience ; 24(4): 102239, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33997666

RESUMO

Broad-scale, quantitative assessments of insect biodiversity and the factors shaping it remain particularly poorly explored. Here we undertook a spatial phylogenetic analysis of North American butterflies to test whether climate stability and temperature gradients have shaped their diversity and endemism. We also performed the first quantitative comparisons of spatial phylogenetic patterns between butterflies and flowering plants. We expected concordance between the two groups based on shared historical environmental drivers and presumed strong butterfly-host plant specializations. We instead found that biodiversity patterns in butterflies are strikingly different from flowering plants, especially warm deserts. In particular, butterflies show different patterns of phylogenetic clustering compared with flowering plants, suggesting differences in habitat conservation between the two groups. These results suggest that shared biogeographic histories and trophic associations do not necessarily assure similar diversity outcomes. The work has applied value in conservation planning, documenting warm deserts as a North American butterfly biodiversity hotspot.

5.
Zootaxa ; 4802(1): zootaxa.4802.1.4, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-33056632

RESUMO

A geospatial analysis of 1,906,302 records of 1938 species of Australian vertebrates has shown that the original regions proposed in the 19th century, namely the Eyrean, Torresian and Bassian still hold. The analysis has shown that the Eyrean region has an east-west divide, forming two, possibly independent arid regions (Eastern Desert and Western Desert provinces), that are shaped by topography and rainfall. A revised and interim zoogeographical area taxonomy of the Australian region is presented herein.


Assuntos
Anfíbios , Répteis , Animais , Austrália , Aves , Mamíferos , Vertebrados
6.
New Phytol ; 228(6): 1972-1985, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533864

RESUMO

There is a wealth of research on the way interactions with pollinators shape flower traits. However, we have much more to learn about influences of the abiotic environment on flower colour. We combine quantitative flower colour data for 339 species from a broad spatial range covering tropical, temperate, arid, montane and coastal environments from 9.25ºS to 43.75ºS with 11 environmental variables to test hypotheses about how macroecological patterns in flower colouration relate to biotic and abiotic conditions. Both biotic community and abiotic conditions are important in explaining variation of flower colour traits on a broad scale. The diversity of pollinating insects and the plant community have the highest predictive power for flower colouration, followed by mean annual precipitation and solar radiation. On average, flower colours are more chromatic where there are fewer pollinators, solar radiation is high, precipitation and net primary production are low, and growing seasons are short, providing support for the hypothesis that higher chromatic contrast of flower colours may be related to stressful conditions. To fully understand the ecology and evolution of flower colour, we should incorporate the broad selective context that plants experience into research, rather than focusing primarily on effects of plant-pollinator interactions.


Assuntos
Flores , Polinização , Animais , Cor , Insetos , Plantas
7.
Ecol Evol ; 9(8): 4568-4588, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31031928

RESUMO

The Australian freshwater fish fauna is very unique, but poorly understood. In the Australian Monsoonal Tropics (AMT) biome of northern Australia, the number of described and candidate species has nearly doubled since the last attempt to analyse freshwater fish species composition patterns and determine a bioregionalisation scheme. Here, we utilise the most complete database of catchment-scale freshwater fish distributions from the AMT to date to: (a) reanalyze spatial patterns of species richness, endemism and turnover of freshwater fishes; (b) propose a biogeographic regionalisation based on species turnover; (c) assess the relationship between species turnover and patterns of environmental change and historic drainage connectivity; and (d) identify sampling gaps. Biogeographic provinces were identified using an agglomerative cluster analysis of a Simpson's beta (ß sim) dissimilarity matrix. A generalised dissimilarity model incorporating eighteen environmental variables was used to investigate the environmental correlates of species turnover. Observed and estimated species richness and endemism were calculated and inventory completeness was estimated based on the ratio of observed to estimated species richness. Three major freshwater fish biogeographic provinces and 14 subprovinces are proposed. These differ substantially from the current bioregionalisation scheme. Species turnover was most strongly influenced by environmental variables that are interpreted to reflect changes in terrain (catchment relief and confinement), geology and climate (runoff perenniality, stream density), and biotic responses to climate (net primary productivity). Past connectivity between rivers during low sea-level events is also influential highlighting the importance of historical processes in explaining contemporary patterns of biodiversity in the AMT. The inclusion of 49 newly discovered species and candidate species only reinforced known focal points of species richness and endemism in the AMT. However, a number of key sampling gaps remain that need to be filled to fully characterise the proposed bioregionalisation.

8.
Cladistics ; 35(6): 654-670, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34618948

RESUMO

We present the largest comparative biogeographical analysis that has complete coverage of Australia's geography (20 phytogeographical subregions), using the most complete published molecular phylogenies to date of large Australian plant clades (Acacia, Banksia and the eucalypts). Two distinct sets of areas within the Australian flora were recovered, using distributional data from the Australasian Virtual Herbarium (AVH) and the Atlas of Living Australia (ALA): younger Temperate, Eremaean and Monsoonal biomes, and older southwest + west, southeast and northern historical biogeographical regions. The analyses showed that by partitioning the data into two sets, using either a Majority or a Frequency method to select taxon distributions, two equally valid results were found. The dataset that used a Frequency method discovered general area cladograms that resolved patterns of the Australian biomes, whereas if widespread taxa (Majority method, with >50% of occurrences outside a single subregion) were removed the analysis then recovered historical biogeographical regions. The study highlights the need for caution when processing taxon distributions prior to analysis as, in the case of the history of Australian phytogeography, the validity of both biomes and historical areas have been called into question.

9.
iScience ; 11: 57-70, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30590251

RESUMO

Recent availability of biodiversity data resources has enabled an unprecedented ability to estimate phylogenetically based biodiversity metrics over broad scales. Such approaches elucidate ecological and evolutionary processes yielding a biota and help guide conservation efforts. However, the choice of appropriate phylogenetic resources and underlying input data uncertainties may affect interpretation. Here, we address how differences among phylogenetic source trees and levels of phylogenetic uncertainty affect these metrics and test existing hypotheses regarding geographic biodiversity patterns across the diverse vascular plant flora of Florida, US. Ecological niche models for 1,490 Florida species were combined with a "purpose-built" phylogenetic tree (phylogram and chronogram), as well as with trees derived from community resources (Phylomatic and Open Tree of Life). There were only modest differences in phylodiversity metrics given the phylogenetic source tree and taking into account the level of phylogenetic uncertainty; we identify similar areas of conservation interest across Florida regardless of the method used.

10.
Ecol Evol ; 6(8): 2579-93, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27066246

RESUMO

Conserving different spatial and temporal dimensions of biological diversity is considered necessary for maintaining ecosystem functions under predicted global change scenarios. Recent work has shifted the focus from spatially local (α-diversity) to macroecological scales (ß- and γ-diversity), emphasizing links between macroecological biodiversity and ecosystem functions (MB-EF relationships). However, before the outcomes of MB-EF analyses can be useful to real-world decisions, empirical modeling needs to be developed for natural ecosystems, incorporating a broader range of data inputs, environmental change scenarios, underlying mechanisms, and predictions. We outline the key conceptual and technical challenges currently faced in developing such models and in testing and calibrating the relationships assumed in these models using data from real ecosystems. These challenges are explored in relation to two potential MB-EF mechanisms: "macroecological complementarity" and "spatiotemporal compensation." Several regions have been sufficiently well studied over space and time to robustly test these mechanisms by combining cutting-edge spatiotemporal methods with remotely sensed data, including plant community data sets in Australia, Europe, and North America. Assessing empirical MB-EF relationships at broad spatiotemporal scales will be crucial in ensuring these macroecological processes can be adequately considered in the management of biodiversity and ecosystem functions under global change.

11.
Proc Biol Sci ; 282(1820): 20151998, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26645199

RESUMO

Seed dispersal is a key process in plant spatial dynamics. However, consistently applicable generalizations about dispersal across scales are mostly absent because of the constraints on measuring propagule dispersal distances for many species. Here, we focus on fleshy-fruited taxa, specifically taxa with large fleshy fruits and their dispersers across an entire continental rainforest biome. We compare species-level results of whole-chloroplast DNA analyses in sister taxa with large and small fruits, to regional plot-based samples (310 plots), and whole-continent patterns for the distribution of woody species with either large (more than 30 mm) or smaller fleshy fruits (1093 taxa). The pairwise genomic comparison found higher genetic distances between populations and between regions in the large-fruited species (Endiandra globosa), but higher overall diversity within the small-fruited species (Endiandra discolor). Floristic comparisons among plots confirmed lower numbers of large-fruited species in areas where more extreme rainforest contraction occurred, and re-colonization by small-fruited species readily dispersed by the available fauna. Species' distribution patterns showed that larger-fruited species had smaller geographical ranges than smaller-fruited species and locations with stable refugia (and high endemism) aligned with concentrations of large fleshy-fruited taxa, making them a potentially valuable conservation-planning indicator.


Assuntos
Frutas/anatomia & histologia , Lauraceae/anatomia & histologia , Dispersão Vegetal , Floresta Úmida , Austrália , DNA de Plantas/genética , Frutas/genética , Genoma de Cloroplastos , Genoma de Planta , Lauraceae/genética , Sementes , Análise de Sequência de DNA
12.
Front Genet ; 6: 132, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25926846

RESUMO

Because ferns have a wide range of habitat preferences and are widely distributed, they are an ideal group for understanding how diversity is distributed. Here we examine fern diversity on a broad-scale using standard and corrected richness measures as well as phylogenetic indices; in addition we determine the environmental predictors of each diversity metric. Using the combined records of Australian herbaria, a dataset of over 60,000 records was obtained for 89 genera to infer richness. A molecular phylogeny of all the genera was constructed and combined with the herbarium records to obtain phylogenetic diversity patterns. A hotspot of both taxic and phylogenetic diversity occurs in the Wet Tropics of northeastern Australia. Although considerable diversity is distributed along the eastern coast, some important regions of diversity are identified only after sample-standardization of richness and through the phylogenetic metric. Of all of the metrics, annual precipitation was identified as the most explanatory variable, in part, in agreement with global and regional fern studies. However, precipitation was combined with a different variable for each different metric. For corrected richness, precipitation was combined with temperature seasonality, while correlation of phylogenetic diversity to precipitation plus radiation indicated support for the species-energy hypothesis. Significantly high and significantly low phylogenetic diversity were found in geographically separate areas. These separate areas correlated with different climatic conditions such as seasonality in precipitation. The phylogenetic metrics identified additional areas of significant diversity, some of which have not been revealed using traditional taxonomic analyses, suggesting that different ecological and evolutionary processes have operated over the continent. Our study demonstrates that it is possible and vital to incorporate evolutionary metrics when inferring biodiversity hotspots from large compilations of data.

13.
Sci Total Environ ; 534: 131-43, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25976346

RESUMO

Phylodiversity measures summarise the phylogenetic diversity patterns of groups of organisms. By using branches of the tree of life, rather than its tips (e.g., species), phylodiversity measures provide important additional information about biodiversity that can improve conservation policy and outcomes. As a biodiverse nation with a strong legislative and policy framework, Australia provides an opportunity to use phylogenetic information to inform conservation decision-making. We explored the application of phylodiversity measures across Australia with a focus on two highly biodiverse regions, the south west of Western Australia (SWWA) and the South East Queensland bioregion (SEQ). We analysed seven diverse groups of organisms spanning five separate phyla on the evolutionary tree of life, the plant genera Acacia and Daviesia, mammals, hylid frogs, myobatrachid frogs, passerine birds, and camaenid land snails. We measured species richness, weighted species endemism (WE) and two phylodiversity measures, phylogenetic diversity (PD) and phylogenetic endemism (PE), as well as their respective complementarity scores (a measure of gains and losses) at 20 km resolution. Higher PD was identified within SEQ for all fauna groups, whereas more PD was found in SWWA for both plant groups. PD and PD complementarity were strongly correlated with species richness and species complementarity for most groups but less so for plants. PD and PE were found to complement traditional species-based measures for all groups studied: PD and PE follow similar spatial patterns to richness and WE, but highlighted different areas that would not be identified by conventional species-based biodiversity analyses alone. The application of phylodiversity measures, particularly the novel weighted complementary measures considered here, in conservation can enhance protection of the evolutionary history that contributes to present day biodiversity values of areas. Phylogenetic measures in conservation can include important elements of biodiversity in conservation planning, such as evolutionary potential and feature diversity that will improve decision-making and lead to better biodiversity conservation outcomes.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/legislação & jurisprudência , Política Ambiental , Plantas/classificação , Austrália , Conservação dos Recursos Naturais/métodos
14.
Ecol Evol ; 5(22): 5177-5192, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30151122

RESUMO

Identifying geographical areas with the greatest representation of the tree of life is an important goal for the management and conservation of biodiversity. While there are methods available for using a single phylogenetic tree to assess spatial patterns of biodiversity, there has been limited exploration of how separate phylogenies from multiple taxonomic groups can be used jointly to map diversity and endemism. Here, we demonstrate how to apply different phylogenetic approaches to assess biodiversity across multiple taxonomic groups. We map spatial patterns of phylogenetic diversity/endemism to identify concordant areas with the greatest representation of biodiversity across multiple taxa and demonstrate the approach by applying it to the Murray-Darling basin region of southeastern Australia. The areas with significant centers of phylogenetic diversity and endemism were distributed differently for the five taxonomic groups studied (plant genera, fish, tree frogs, acacias, and eucalypts); no strong shared patterns across all five groups emerged. However, congruence was apparent between some groups in some parts of the basin. The northern region of the basin emerges from the analysis as a priority area for future conservation initiatives focused on eucalypts and tree frogs. The southern region is particularly important for conservation of the evolutionary heritage of plants and fishes.

15.
Ecol Evol ; 4(16): 3264-78, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25473479

RESUMO

Previous research focusing on broad-scale or geographically invariant species-environment dependencies suggest that temperature-related variables explain more of the variation in reptile distributions than precipitation. However, species-environment relationships may exhibit considerable spatial variation contingent upon the geographic nuances that vary between locations. Broad-scale, geographically invariant analyses may mask this local variation and their findings may not generalize to different locations at local scales. We assess how reptile-climatic relationships change with varying spatial scale, location, and direction. Since the spatial distributions of diversity and endemism hotspots differ for other species groups, we also assess whether reptile species turnover and endemism hotspots are influenced differently by climatic predictors. Using New Zealand reptiles as an example, the variation in species turnover, endemism and turnover in climatic variables was measured using directional moving window analyses, rotated through 360°. Correlations between the species turnover, endemism and climatic turnover results generated by each rotation of the moving window were analysed using multivariate generalized linear models applied at national, regional, and local scales. At national-scale, temperature turnover consistently exhibited the greatest influence on species turnover and endemism, but model predictive capacity was low (typically r (2) = 0.05, P < 0.001). At regional scales the relative influence of temperature and precipitation turnover varied between regions, although model predictive capacity was also generally low. Climatic turnover was considerably more predictive of species turnover and endemism at local scales (e.g., r (2) = 0.65, P < 0.001). While temperature turnover had the greatest effect in one locale (the northern North Island), there was substantial variation in the relative influence of temperature and precipitation predictors in the remaining four locales. Species turnover and endemism hotspots often occurred in different locations. Climatic predictors had a smaller influence on endemism. Our results caution against assuming that variability in temperature will always be most predictive of reptile biodiversity across different spatial scales, locations and directions. The influence of climatic turnover on the species turnover and endemism of other taxa may exhibit similar patterns of spatial variation. Such intricate variation might be discerned more readily if studies at broad scales are complemented by geographically variant, local-scale analyses.

16.
Am J Bot ; 101(12): 2121-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25480709

RESUMO

UNLABELLED: • PREMISE OF STUDY: Have Gondwanan rainforest floral associations survived? Where do they occur today? Have they survived continuously in particular locations? How significant is their living floristic signal? We revisit these classic questions in light of significant recent increases in relevant paleobotanical data.• METHODS: We traced the extinction and persistence of lineages and associations through the past across four now separated regions-Australia, New Zealand, Patagonia, and Antarctica-using fossil occurrence data from 63 well-dated Gondwanan rainforest sites and 396 constituent taxa. Fossil sites were allocated to four age groups: Cretaceous, Paleocene-Eocene, Neogene plus Oligocene, and Pleistocene. We compared the modern and ancient distributions of lineages represented in the fossil record to see if dissimilarity increased with time. We quantified similarity-dissimilarity of composition and taxonomic structure among fossil assemblages, and between fossil and modern assemblages.• KEY RESULTS: Strong similarities between ancient Patagonia and Australia confirmed shared Gondwanan rainforest history, but more of the lineages persisted in Australia. Samples of ancient Australia grouped with the extant floras of Australia, New Guinea, New Caledonia, Fiji, and Mt. Kinabalu. Decreasing similarity through time among the regional floras of Antarctica, Patagonia, New Zealand, and southern Australia reflects multiple extinction events.• CONCLUSIONS: Gondwanan rainforest lineages contribute significantly to modern rainforest community assembly and often co-occur in widely separated assemblages far from their early fossil records. Understanding how and where lineages from ancient Gondwanan assemblages co-occur today has implications for the conservation of global rainforest vegetation, including in the Old World tropics.


Assuntos
Evolução Biológica , Fósseis , Filogenia , Plantas/genética , Floresta Úmida , Clima Tropical , Regiões Antárticas , Australásia , Filogeografia
17.
Nat Commun ; 5: 4473, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-25034856

RESUMO

Understanding spatial patterns of biodiversity is critical for conservation planning, particularly given rapid habitat loss and human-induced climatic change. Diversity and endemism are typically assessed by comparing species ranges across regions. However, investigation of patterns of species diversity alone misses out on the full richness of patterns that can be inferred using a phylogenetic approach. Here, using Australian Acacia as an example, we show that the application of phylogenetic methods, particularly two new measures, relative phylogenetic diversity and relative phylogenetic endemism, greatly enhances our knowledge of biodiversity across both space and time. We found that areas of high species richness and species endemism are not necessarily areas of high phylogenetic diversity or phylogenetic endemism. We propose a new method called categorical analysis of neo- and paleo-endemism (CANAPE) that allows, for the first time, a clear, quantitative distinction between centres of neo- and paleo-endemism, useful to the conservation decision-making process.


Assuntos
Acacia/genética , Biodiversidade , Filogenia , Austrália , Análise por Conglomerados , Dados de Sequência Molecular , Distribuição Aleatória
18.
PLoS One ; 9(3): e91256, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24618879

RESUMO

It is commonly accepted that species interactions such as granivory are more intense in the tropics. However, this has rarely been tested. A global dataset of post-dispersal seed removal by invertebrates and vertebrates for 79 native plant species from semi-natural and natural terrestrial habitats ranging from 55° N to 45° S, was compiled from the global literature to test the hypothesis that post-dispersal seed removal by invertebrates and vertebrates is more intense at lower latitudes. We also quantified the relationship between post-dispersal seed removal by vertebrates and by invertebrates to global climatic features including temperature, actual evapotranspiration (AET) and rainfall seasonality. Linear mixed effect models were applied to describe the relationships between seed removal and latitude, hemisphere and climatic variables controlling for the effect of seed mass. Post-dispersal seed removal by invertebrates was negatively related to latitude. In contrast, post-dispersal seed removal by vertebrates was positively but weakly related to latitude. Mean annual temperature and actual evapotranspiration were positively related to post-dispersal seed removal by invertebrates, but not to post-dispersal seed removal by vertebrates, which was only marginally negatively related to rainfall seasonality. The inclusion of seed mass improved the fit of all models, but the term for seed mass was not significant in any model. Although a good climatic model for predicting post-dispersal seed predation by vertebrates at the global level was not found, our results suggest different and opposite latitudinal patterns of post-dispersal seed removal by invertebrates vs vertebrates. This is the first time that a negative relationship between post-dispersal seed removal by invertebrates and latitude, and a positive relationship with temperature and AET have been documented at a global-scale. These results have important implications for understanding global patterns in plant-animal interactions, and the factors that shape plant reproductive ecology, and also for predicting how this plant-animal interaction might respond to climate change.


Assuntos
Invertebrados , Dispersão de Sementes , Vertebrados , Animais , Ecossistema , Meio Ambiente , Comportamento Alimentar , Sementes
19.
PLoS One ; 8(12): e80685, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312493

RESUMO

OBJECTIVES: Identify patterns of change in species distributions, diversity, concentrations of evolutionary history, and assembly of Australian rainforests. METHODS: We used the distribution records of all known rainforest woody species in Australia across their full continental extent. These were analysed using measures of species richness, phylogenetic diversity (PD), phylogenetic endemism (PE) and phylogenetic structure (net relatedness index; NRI). Phylogenetic structure was assessed using both continental and regional species pools. To test the influence of growth-form, freestanding and climbing plants were analysed independently, and in combination. RESULTS: Species richness decreased along two generally orthogonal continental axes, corresponding with wet to seasonally dry and tropical to temperate habitats. The PE analyses identified four main areas of substantially restricted phylogenetic diversity, including parts of Cape York, Wet Tropics, Border Ranges, and Tasmania. The continental pool NRI results showed evenness (species less related than expected by chance) in groups of grid cells in coastally aligned areas of species rich tropical and sub-tropical rainforest, and in low diversity moist forest areas in the south-east of the Great Dividing Range and in Tasmania. Monsoon and drier vine forests, and moist forests inland from upland refugia showed phylogenetic clustering, reflecting lower diversity and more relatedness. Signals for evenness in Tasmania and clustering in northern monsoon forests weakened in analyses using regional species pools. For climbing plants, values for NRI by grid cell showed strong spatial structuring, with high diversity and PE concentrated in moist tropical and subtropical regions. CONCLUSIONS/SIGNIFICANCE: Concentrations of rainforest evolutionary history (phylo-diversity) were patchily distributed within a continuum of species distributions. Contrasting with previous concepts of rainforest community distribution, our findings of continuous distributions and continental connectivity have significant implications for interpreting rainforest evolutionary history and current day ecological processes, and for managing rainforest diversity in changing circumstances.


Assuntos
Biodiversidade , Filogenia , Árvores/fisiologia , Austrália
20.
Rev. bras. entomol ; 57(3): 241-247, July-Sept. 2013. ilus, graf, mapas, tab
Artigo em Inglês | LILACS | ID: lil-691386

RESUMO

Geobiota are defined by taxic assemblages (i.e., biota) and their defining abiotic breaks, which are mapped in cross-section to reveal past and future biotic boundaries. We term this conceptual approach Temporal Geobiotic Mapping (TGM) and offer it as a conceptual approach for biogeography. TGM is based on geological cross-sectioning, which creates maps based on the distribution of biota and known abiotic factors that drive their distribution, such as climate, topography, soil chemistry and underlying geology. However, the availability of abiotic data is limited for many areas. Unlike other approaches, TGM can be used when there is minimal data available. In order to demonstrate TGM, we use the well-known area in the Blue Mountains, New South Wales (NSW), south-eastern Australia and show how surface processes such as weathering and erosion affect the future distribution of a Moist Basalt Forest taxic assemblage. Biotic areas are best represented visually as maps, which can show transgressions and regressions of biota and abiota over time. Using such maps, a biogeographer can directly compare animal and plant distributions with features in the abiotic environment and may identify significant geographical barriers or pathways that explain biotic distributions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...