Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(9): 14929-14939, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859156

RESUMO

Chip-scale optical frequency combs enable the generation of highly-coherent pulsed light at gigahertz-level repetition rates, with potential technological impact ranging from telecommunications to sensing and spectroscopy. In combination with techniques such as dual-comb spectroscopy, their utilization would be particularly beneficial for sensing of molecular species in the mid-infrared spectrum, in an integrated fashion. However, few demonstrations of direct microcomb generation within this spectral region have been showcased so far. In this work, we report the generation of Kerr soliton microcombs in silicon nitride integrated photonics. Leveraging a high-Q silicon nitride microresonator, our device achieves soliton generation under milliwatt-level pumping at 1.97 µm, with a generated spectrum encompassing a 422 nm bandwidth and extending up to 2.25 µm. The use of a dual pumping scheme allows reliable access to several comb states, including primary combs, modulation instability combs, as well as multi- and single-soliton states, the latter exhibiting high stability and low phase noise. Our work extends the domain of silicon nitride based Kerr microcombs towards the mid-infrared using accessible factory-grade technology and lays the foundations for the realization of fully integrated mid-infrared comb sources.

2.
Commun Phys ; 6(1): 249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665401

RESUMO

Temporal Talbot effect, the intriguing phenomenon of the self-imaging of optical pulse trains, is extensively investigated using macroscopic components. However, the ability to manipulate pulse trains, either bright or dark, through the Talbot effect on integrated photonic chips to replace bulky instruments has rarely been reported. Here, we design and experimentally demonstrate a proof-of-principle integrated silicon nitride device capable of imprinting the Talbot phase relation onto in-phase optical combs and generating the two-fold self-images at the output. We show that the GHz-repetition-rate bright and dark pulse trains can be doubled without affecting their spectra as a key feature of the temporal Talbot effect. The designed chip can be electrically tuned to switch between pass-through and repetition-rate-multiplication outputs and is compatible with other related frequencies. The results of this work lay the foundations for the large-scale system-on-chip photonic integration of Talbot-based pulse multipliers, enabling the on-chip flexible up-scaling of pulse trains' repetition rate without altering their amplitude spectra.

3.
ACS Photonics ; 8(9): 2713-2721, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34553003

RESUMO

The heterogeneous integration of low-dimensional materials with photonic waveguides has spurred wide research interest. Here, we report on the experimental investigation and the numerical modeling of enhanced nonlinear pulse broadening in silicon nitride waveguides with the heterogeneous integration of few-layer WS2. After transferring a few-layer WS2 flake of ∼14.8 µm length, the pulse spectral broadening in a dispersion-engineered silicon nitride waveguide has been enhanced by ∼48.8% in bandwidth. Through numerical modeling, an effective nonlinear coefficient higher than 600 m-1 W-1 has been retrieved for the heterogeneous waveguide indicating an enhancement factor of larger than 300 with respect to the pristine waveguide at a wavelength of 800 nm. With further advances in two-dimensional material fabrication and integration techniques, on-chip heterostructures will offer another degree of freedom for waveguide engineering, enabling high-performance nonlinear optical devices, such as frequency combs and quantum light sources.

4.
ACS Photonics ; 7(12): 3423-3429, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33365361

RESUMO

Midinfrared spectroscopy is a universal way to identify chemical and biological substances. Indeed, when interacting with a light beam, most molecules are responsible for absorption at specific wavelengths in the mid-IR spectrum, allowing to detect and quantify small traces of substances. On-chip broadband light sources in the mid-infrared are thus of significant interest for compact sensing devices. In that regard, supercontinuum generation offers a mean to efficiently perform coherent light conversion over an ultrawide spectral range, in a single and compact device. This work reports the experimental demonstration of on-chip two-octave supercontinuum generation in the mid-infrared wavelength, ranging from 3 to 13 µm (that is larger than 2500 cm-1) and covering almost the full transparency window of germanium. Such an ultrawide spectrum is achieved thanks to the unique features of Ge-rich graded SiGe waveguides, which allow second-order dispersion tailoring and low propagation losses over a wide wavelength range. The influence of the pump wavelength and power on the supercontinuum spectra has been studied. A good agreement between the numerical simulations and the experimental results is reported. Furthermore, a very high coherence is predicted in the entire spectrum. These results pave the way for wideband, coherent, and compact mid-infrared light sources by using a single device and compatible with large-scale fabrication processes.

5.
Opt Lett ; 44(20): 5009-5012, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31613250

RESUMO

We demonstrated a class of highly nonlinear hybrid waveguide structures based on infiltration of As2S3 chalcogenide glass into silicon slot waveguides. The nonlinear properties of the hybrid waveguides were precisely quantified via a bidirectional top-hat D-scan method, enabling a direct comparison between properties measured using different device geometries. We experimentally demonstrate hybrid As2S3-Si slot waveguides with a two-photon absorption (TPA) figure of merit exceeding 2 at near infrared wavelengths. These waveguides largely satisfy the critical criterion for efficient nonlinear integrated photonics (FOMTPAwg>1), allowing phase shifts greater than π with minimal overall losses. These results pave the way for efficient and robust ultrafast all-optical devices and circuits in large-scale silicon photonics technology.

6.
Sci Rep ; 9(1): 3604, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837661

RESUMO

High-performance optical beam splitters are of fundamental importance for the development of advanced silicon photonics integrated circuits. However, due to the high refractive index contrast of silicon-on-insulator platforms, state-of-the-art nanophotonic splitters are hampered by trade-offs in bandwidth, polarization dependence and sensitivity to fabrication errors. Here, we present a new strategy that exploits modal engineering in slotted waveguides to overcome these limitations, enabling ultra-broadband polarization-insensitive optical power splitters with relaxed fabrication tolerances. The proposed splitter design relies on a single-mode slot waveguide that is gradually transformed into two strip waveguides by a symmetric taper, yielding equal power splitting. Based on this concept, we experimentally demonstrate -3 ± 0.5 dB polarization-independent transmission for an unprecedented 390 nm bandwidth (1260-1650 nm), even in the presence of waveguide width deviations as large as ±25 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...