Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Robot AI ; 11: 1335147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638271

RESUMO

The robotics discipline is exploring precise and versatile solutions for upper-limb rehabilitation in Multiple Sclerosis (MS). People with MS can greatly benefit from robotic systems to help combat the complexities of this disease, which can impair the ability to perform activities of daily living (ADLs). In order to present the potential and the limitations of smart mechatronic devices in the mentioned clinical domain, this review is structured to propose a concise SWOT (Strengths, Weaknesses, Opportunities, and Threats) Analysis of robotic rehabilitation in MS. Through the SWOT Analysis, a method mostly adopted in business management, this paper addresses both internal and external factors that can promote or hinder the adoption of upper-limb rehabilitation robots in MS. Subsequently, it discusses how the synergy with another category of interaction technologies - the systems underlying virtual and augmented environments - may empower Strengths, overcome Weaknesses, expand Opportunities, and handle Threats in rehabilitation robotics for MS. The impactful adaptability of these digital settings (extensively used in rehabilitation for MS, even to approach ADL-like tasks in safe simulated contexts) is the main reason for presenting this approach to face the critical issues of the aforementioned SWOT Analysis. This methodological proposal aims at paving the way for devising further synergistic strategies based on the integration of medical robotic devices with other promising technologies to help upper-limb functional recovery in MS.

2.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941174

RESUMO

The clinical usage of powered exoskeletons for the rehabilitation of patients affected by lower limb disorders has been constantly growing in the last decade. This paper presents a versatile and reliable gait pattern generator for these devices able to accommodate several gait requirements, i.e., step length, clearance, and time, and to suit a wide range of persons. In the proposed method, the human gait phases have been modeled with a set of trajectories as Bèzier curves, enabling a robotic lower-limb exoskeleton to walk in a continuous way, similarly to the physiological gait cycle. The kinematic, kinetic, and spatial requirements for each gait phase are translated into the control points of the Bèzier curves that define the trajectory for that phase. The outcome of this study has been tested on real scenarios with a group of healthy subjects wearing the TWIN lower-limb exoskeleton. They were asked to walk at different speeds, generally defined as slow, medium, and fast. The results are shown in terms of joint positions, velocities, and body-mass-normalized torques. The maximum hip and knee joint torque was observed in the support phase. While, at higher speeds the maximum hip torque was provided in the swing phase due to the mechanical properties and limits of the device. In terms of speed, all the subjects reached 0.44 m/s, which is the minimum required community ambulation.


Assuntos
Exoesqueleto Energizado , Humanos , Marcha/fisiologia , Caminhada/fisiologia , Extremidade Inferior/fisiologia , Articulação do Joelho/fisiologia , Fenômenos Biomecânicos
3.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941189

RESUMO

Recent human-centred design studies suggest that acoustic noise could affect the physical use and psychological acceptance of a biomedical device. These aspects are especially relevant in the prosthetic field, in which device loudness is often related to rejection. The aim of the study is to inquire on the possibility to reduce the acoustic noise emitted by a robotic leg prosthesis by improving its casing. First, acoustic noise emissions are characterized experimentally using an anechoic chamber, both for the whole prosthesis, and for its actuator (i.e., noise source) in isolation. The characterizations show that the whole prosthesis including its casing amplify the actuator noise, and that noise emissions are concentrated within a certain frequency range. Based on these findings, the prosthesis casing has been redesigned to include a panel of Helmholtz resonator-based acoustic metamaterials as proof of concept, which attenuate respective noise emissions. Experimental validations show that the use of such metamaterials in the prosthesis casing can significantly reduce noise emissions without compromising on prosthesis size and weight.


Assuntos
Membros Artificiais , Humanos , Ruído , Acústica , Implantação de Prótese
4.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941190

RESUMO

This paper addresses the problem of online and adaptive gait pattern generation for powered lower-limb exoskeletons (PLLEs), exploiting the motion of sensorized crutches. We conduct a series of experiments with subjects walking with and without crutches to investigate the synergies of walking between upper and lower body segments, by adopting principal component analysis (PCA), We also evaluate the effect of using crutches on the walking synergies, and we demonstrate that upper and lower limb walking synergies undergo slight changes in that case. However, the upper and lower limb synergies remain evident and can be exploited in order to use the motion of crutches as an input to PLLEs to identify a desired motion of the lower limb. We propose a method to use the results of synergy analysis to shape gait parameters in the real-time control of PLLEs. To evaluate the scalability of our approach for real-world applications, we conduct a number of experiments with subjects wearing a PLLE and using sensorized crutches to adaptively change the gait parameters of walking steps, depending on upper body actions.


Assuntos
Muletas , Marcha , Humanos , Fenômenos Biomecânicos , Caminhada , Locomoção
5.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941218

RESUMO

The complexity of the human upper limb makes replicating it in a prosthetic device a significant challenge. With advancements in mechatronic developments involving the addition of a large number of degrees of freedom, novel control strategies are required. To accommodate this need, this study aims at developing an IMU-based control for the HannesARM upper-limb prosthetic device, as a proof-of-concept for new control strategies integrating data-fusion approaches. The natural human control of the upper-limb is based on different inputs that allow adaptive control. To mimic this in prostheses, the implementation of IMUs provides kinematic information of both the stump and the prosthesis to enrich the EMG control. The principle of operation is to decode upper limb movements by using a custom-made system and to replicate them in prosthetic arms improving the control algorithms. To evaluate the system's effectiveness, the custom algorithm's motion extraction was compared to a motion capture system using fifteen able-bodied subjects. The results showed that this system scored 0.16 ± 0.04 and 0.81 ± 0.12 in Root Mean Squared Error and Cross-Correlation compared to the motion capture system. Experimental results demonstrate how this work can extract valuable kinematic information necessary for new and improved control strategies, such as intention detection or pattern recognition, to allow users to perform a broader range of tasks and enhancing in turn their quality of life.


Assuntos
Braço , Membros Artificiais , Humanos , Qualidade de Vida , Eletromiografia/métodos , Extremidade Superior
6.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941251

RESUMO

When it comes to robotic-mediated rehabilitation it is mandatory to design a system that guarantees a safe and compliant human-machine interaction. Dealing with rehabilitative upper limb exoskeletons, Series Elastic Actuators offer a potential solution for this purpose. This work proposes four different solutions for SEAs' spring design. After an analysis on the mechanical requirements, four different solutions are explored and presented. The performances of the proposed highly integrated SEAs are compared. An initial static characterization provided insights on the linearity and repeatability of each spring torque-angle performances. The dynamics of the springs and their frequency responses are then analysed to show how it is possible to exploit our system for human-robot interaction applications.


Assuntos
Exoesqueleto Energizado , Robótica , Humanos , Desenho de Equipamento
7.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941270

RESUMO

Robotic rehabilitation has demonstrated slight positive effects compared to traditional care, but there is still a lack of targeted high-level control strategies in the current state-of-the-art for minimizing pathological motor behaviors. In this study, we analyzed upper-limb motion capture data from healthy subjects performing a pick-and-place task to identify task-specific variability in postural patterns. The results revealed consistent behaviors among subjects, presenting an opportunity to develop a novel extraction method for variable volume references based solely on observations from healthy individuals. These human-centered references were tested on a simulated 4 degrees-of-freedom upper-limb exoskeleton, showing its compliant adaptation to the path considering the variance in healthy subjects' motor behavior.


Assuntos
Exoesqueleto Energizado , Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Extremidade Superior , Fenômenos Biomecânicos
8.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941277

RESUMO

Despite progressive developments over the last decades, current upper limb prostheses still lack a suitable control able to fully restore the functionalities of the lost arm. Traditional control approaches for prostheses fail when simultaneously actuating multiple Degrees of Freedom (DoFs), thus limiting their usability in daily-life scenarios. Machine learning, on the one hand, offers a solution to this issue through a promising approach for decoding user intentions but fails when input signals change. Incremental learning, on the other hand, reduces sources of error by quickly updating the model on new data rather than training the control model from scratch. In this study, we present an initial evaluation of a position and a velocity control strategy for simultaneous and proportional control over 3-DoFs based on incremental learning. The proposed controls are tested using a virtual Hannes prosthesis on two healthy participants. The performances are evaluated over eight sessions by performing the Target Achievement Control test and administering SUS and NASA-TLX questionnaires. Overall, this preliminary study demonstrates that both control strategies are promising approaches for prosthetic control, offering the potential to improve the usability of prostheses for individuals with limb loss. Further research extended to a wider population of both healthy subjects and amputees will be essential to thoroughly assess these control paradigms.


Assuntos
Amputados , Membros Artificiais , Humanos , Eletromiografia/métodos , Extremidade Superior , Aprendizado de Máquina
9.
IEEE Trans Biomed Eng ; 70(12): 3354-3365, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37314906

RESUMO

OBJECTIVE: The bidirectional communication between the user and the prosthesis is an important requirement when developing prosthetic hands. Proprioceptive feedback is fundamental to perceiving prosthesis movement without the need for constant visual attention. We propose a novel solution to encode wrist rotation using a vibromotor array and Gaussian interpolation of vibration intensity. The approach generates tactile sensation that smoothly rotates around the forearm congruently with prosthetic wrist rotation. The performance of this scheme was systematically assessed for a range of parameter values (number of motors and Gaussian standard deviation). METHODS: Fifteen non-disabled subjects and one individual with congenital limb deficiency used vibrational feedback to control a virtual hand in the target-achievement control test. Performance was assessed by end-point error and efficiency as well as subjective impressions. RESULTS: The results showed a preference for smooth feedback and a higher number of motors (8 and 6 versus 4). With 8 and 6 motors, the standard deviation, determining the sensation spread and continuity, could be modulated through a broad range of values (0.1 - 2) without a significant performance loss. The overall average error and efficiency across these feedback configurations were ∼ 10% and ∼ 30%, respectively. For low values of standard deviation (0.1-0.5), the number of motors could be reduced to 4 without a significant performance decrease. CONCLUSION: The study demonstrated that the developed strategy provided meaningful rotation feedback. Moreover, the results indicate that the Gaussian standard deviation could be used as an independent parameter to encode an additional feedback variable. SIGNIFICANCE: The proposed method is a flexible and effective approach to provide proprioceptive feedback while adjusting the trade-off between sensation quality and the number of vibromotors.


Assuntos
Membros Artificiais , Retroalimentação Sensorial , Humanos , Tato , Mãos , Antebraço
10.
Front Neurosci ; 17: 1078846, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875662

RESUMO

Introduction: In recent years, hand prostheses achieved relevant improvements in term of both motor and functional recovery. However, the rate of devices abandonment, also due to their poor embodiment, is still high. The embodiment defines the integration of an external object - in this case a prosthetic device - into the body scheme of an individual. One of the limiting factors causing lack of embodiment is the absence of a direct interaction between user and environment. Many studies focused on the extraction of tactile information via custom electronic skin technologies coupled with dedicated haptic feedback, though increasing the complexity of the prosthetic system. Contrary wise, this paper stems from the authors' preliminary works on multi-body prosthetic hand modeling and the identification of possible intrinsic information to assess object stiffness during interaction. Methods: Based on these initial findings, this work presents the design, implementation and clinical validation of a novel real-time stiffness detection strategy, without ad-hoc sensing, based on a Non-linear Logistic Regression (NLR) classifier. This exploits the minimum grasp information available from an under-sensorized and under-actuated myoelectric prosthetic hand, Hannes. The NLR algorithm takes as input motor-side current, encoder position, and reference position of the hand and provides as output a classification of the grasped object (no-object, rigid object, and soft object). This information is then transmitted to the user via vibratory feedback to close the loop between user control and prosthesis interaction. This implementation was validated through a user study conducted both on able bodied subjects and amputees. Results: The classifier achieved excellent performance in terms of F1Score (94.93%). Further, the able-bodied subjects and amputees were able to successfully detect the objects' stiffness with a F1Score of 94.08% and 86.41%, respectively, by using our proposed feedback strategy. This strategy allowed amputees to quickly recognize the objects' stiffness (response time of 2.82 s), indicating high intuitiveness, and it was overall appreciated as demonstrated by the questionnaire. Furthermore, an embodiment improvement was also obtained as highlighted by the proprioceptive drift toward the prosthesis (0.7 cm).

11.
Wearable Technol ; 4: e10, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38487762

RESUMO

This manuscript presents a simplified dynamic human-prosthesis model and simulation framework for the purpose of designing and developing lower limb prosthesis hardware and controllers. The objective was to provide an offline design tool to verify the closed-loop behavior of the prosthesis with the human, in order to avoid relying solely on limiting kinematic and kinetic reference trajectories of (able-bodied) subjects and associated static or inverse dynamic analyses, while not having to resort to complete neuromusculoskeletal models of the human that require extensive optimizations to run. The presented approach employs a reduced-order model that includes only the prosthetic limb and trunk in a multi-body dynamic model. External forces are applied to the trunk during stance phase of the intact leg to represent its presence. Walking is realized by employing the well-known spring-loaded inverted pendulum model, which is shown to generate realistic dynamics on the prosthesis while maintaining a stable and modifiable gait. This simple approach is inspired from the rationale that the human is adaptive, and from the desire to facilitate modifications or inclusions of additional user actions. The presented framework is validated with two use cases, featuring a commercial and research knee prosthesis in combination with a passive ankle prosthesis, performing a continuous sequence of standing still, walking at different velocities and stopping.

12.
Front Neurosci ; 16: 915707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507352

RESUMO

Introduction: Difficulties faced while walking are common symptoms after stroke, significantly reducing the quality of life. Walking recovery is therefore one of the main priorities of rehabilitation. Wearable powered exoskeletons have been developed to provide lower limb assistance and enable training for persons with gait impairments by using typical physiological movement patterns. Exoskeletons were originally designed for individuals without any walking capacities, such as subjects with complete spinal cord injuries. Recent systematic reviews suggested that lower limb exoskeletons could be valid tools to restore independent walking in subjects with residual motor function, such as persons post-stroke. To ensure that devices meet end-user needs, it is important to understand and incorporate their perspectives. However, only a limited number of studies have followed such an approach in the post-stroke population. Methods: The aim of the study was to identify the end-users needs and to develop a user-centered-based control system for the TWIN lower limb exoskeleton to provide post-stroke rehabilitation. We thus describe the development and validation, by clinical experts, of TWIN-Acta: a novel control suite for TWIN, specifically designed for persons post-stroke. We detailed the conceived control strategy and developmental phases, and reported evaluation sessions performed on healthy clinical experts and people post-stroke to evaluate TWIN-Acta usability, acceptability, and barriers to usage. At each developmental stage, the clinical experts received a one-day training on the TWIN exoskeleton equipped with the TWIN-Acta control suite. Data on usability, acceptability, and limitations to system usage were collected through questionnaires and semi-structured interviews. Results: The system received overall good usability and acceptability ratings and resulted in a well-conceived and safe approach. All experts gave excellent ratings regarding the possibility of modulating the assistance provided by the exoskeleton during the movement execution and concluded that the TWIN-Acta would be useful in gait rehabilitation for persons post-stroke. The main limit was the low level of system learnability, attributable to the short-time of usage. This issue can be minimized with prolonged training and must be taken into consideration when planning rehabilitation. Discussion: This study showed the potential of the novel control suite TWIN-Acta for gait rehabilitation and efficacy studies are the next step in its evaluation process.

13.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36176125

RESUMO

The solution of the inverse kinematics problem in multi-degrees of freedom robots has been tackled, through the last three decades, by several different approaches including analytical, geometrical, differential and numerical methods. All these techniques present their own advantages and drawbacks. However, a guideline on which approach is better to follow, depending on the kind of task to perform and the type of robotic device used, is still missing. In this work, a quantitative comparative analysis of three different inverse kinematics methodologies for the control of rehabilitative robotic devices is proposed, with aim of devising best practices and guidelines for the selection of the most suitable approach. The analyzed methodologies are implemented and numerically tested on two actual devices, specifically an upper-limb exoskeleton and an upper-limb prosthetic arm.


Assuntos
Membros Artificiais , Procedimentos Cirúrgicos Robóticos , Braço , Fenômenos Biomecânicos , Humanos , Extremidade Superior
14.
J Neuroeng Rehabil ; 19(1): 68, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787721

RESUMO

BACKGROUND: Cybathlon championship aims at promoting the development of prosthetic and assistive devices capable to meet users' needs. This paper describes and analyses possible exploitation outcomes of our team's (REHAB TECH) experience into the Powered Arm Prosthesis Race of the Cybathlon 2020 Global Edition, with the novel prosthetic system Hannes. In detail, we present our analysis on a concurrent evaluation conducted to verify if the Cybathlon training and competition positively influenced pilot's performance and human-technology integration with Hannes, with respect to a non-runner Hannes user. METHODS: Two transradial amputees were recruited as pilots (Pilot 1 and Pilot 2) for the Cybathlon competition and were given the polyarticulated myoelectric prosthetic hand Hannes. Due to COVID-19 emergency, only Pilot 1 was trained for the race. However, both pilots kept Hannes for Home Use for seven weeks. Before this period, they both participated to the evaluation of functionality, embodiment, and user experience (UX) related to Hannes, which they repeated at the end of the Home Use and right after the competition. We analysed Pilot 1's training and race outcomes, as well as changes in the concurrent evaluation, and compared these results with Pilot 2's ones. RESULTS: The Cybathlon training gradually improved Pilot 1's performances, leading to the sixth place with a single error in task 5. In the parallel evaluation, both pilots had an overall improvement over time, whereas Pilot 2 experienced a deterioration of embodiment. In detail, Pilot 1, who followed the training and raced the Cybathlon, improved in greater way. CONCLUSION: Hannes demonstrated to be a valuable competitor and to perform grasps with human-like behaviors. The higher improvements of Pilot 1, who actively participated in the Cybathlon, in terms of functionality, embodiment and UX, may depend on his training and engagement in the effort of achieving a successful user-prosthesis interaction during the competition. Tasks based on Cybathlon's ones could improve the training phase of a prosthetic user, stimulating dexterity, prosthetic integration, and user perception towards the prosthesis. Likewise, timed races or competitions could facilitate and accelerate the learning phase, improving the efficiency and efficacy of the process.


Assuntos
Amputados , Membros Artificiais , COVID-19 , Mãos , Humanos , Extremidade Superior
16.
J Neuroeng Rehabil ; 19(1): 43, 2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526003

RESUMO

BACKGROUND: The inability of users to directly and intuitively control their state-of-the-art commercial prosthesis contributes to a low device acceptance rate. Since Electromyography (EMG)-based control has the potential to address those inabilities, research has flourished on investigating its incorporation in microprocessor-controlled lower limb prostheses (MLLPs). However, despite the proposed benefits of doing so, there is no clear explanation regarding the absence of a commercial product, in contrast to their upper limb counterparts. OBJECTIVE AND METHODOLOGIES: This manuscript aims to provide a comparative overview of EMG-driven control methods for MLLPs, to identify their prospects and limitations, and to formulate suggestions on future research and development. This is done by systematically reviewing academical studies on EMG MLLPs. In particular, this review is structured by considering four major topics: (1) type of neuro-control, which discusses methods that allow the nervous system to control prosthetic devices through the muscles; (2) type of EMG-driven controllers, which defines the different classes of EMG controllers proposed in the literature; (3) type of neural input and processing, which describes how EMG-driven controllers are implemented; (4) type of performance assessment, which reports the performance of the current state of the art controllers. RESULTS AND CONCLUSIONS: The obtained results show that the lack of quantitative and standardized measures hinders the possibility to analytically compare the performances of different EMG-driven controllers. In relation to this issue, the real efficacy of EMG-driven controllers for MLLPs have yet to be validated. Nevertheless, in anticipation of the development of a standardized approach for validating EMG MLLPs, the literature suggests that combining multiple neuro-controller types has the potential to develop a more seamless and reliable EMG-driven control. This solution has the promise to retain the high performance of the currently employed non-EMG-driven controllers for rhythmic activities such as walking, whilst improving the performance of volitional activities such as task switching or non-repetitive movements. Although EMG-driven controllers suffer from many drawbacks, such as high sensitivity to noise, recent progress in invasive neural interfaces for prosthetic control (bionics) will allow to build a more reliable connection between the user and the MLLPs. Therefore, advancements in powered MLLPs with integrated EMG-driven control have the potential to strongly reduce the effects of psychosomatic conditions and musculoskeletal degenerative pathologies that are currently affecting lower limb amputees.


Assuntos
Amputados , Membros Artificiais , Eletromiografia/métodos , Humanos , Caminhada
17.
Proc Inst Mech Eng H ; 236(2): 218-227, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34693815

RESUMO

Energy storing and return (ESAR) prosthetic feet showed continuous improvements during the last 30 years. Despite this, standard guidelines are still missing to achieve an optimal foot design in terms of performances. One of the most important design parameters in ESAR feet is the Rollover Shape (RoS). This represents the foot Center of Pressure (CoP) path in a shank-based coordinate system during stance. RoS objectively describes the foot behavior according to its stiffness, which depends on foot geometry and material. This work presents the development of a finite element modeling methodology able to predict the stiffness characteristic of an ESAR foot and its RoS. The validation of the model is performed on a well-known commercially available prosthetic foot both in bench tests and realistic walking scenario. The obtained results confirm an error of +6.1% on stiffness estimation and +10.2% on RoS evaluation, which underlines that the proposed method is a powerful tool able to replicate the mechanical behavior of a prosthetic foot.


Assuntos
Amputados , Membros Artificiais , Fenômenos Biomecânicos , Análise de Elementos Finitos , , Marcha , Desenho de Prótese , Caminhada
18.
J Neuroeng Rehabil ; 18(1): 168, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863213

RESUMO

BACKGROUND: Transfemoral amputees experience a complex host of physical, psychological, and social challenges, compounded by the functional limitations of current transfemoral prostheses. However, the specific relationships between human factors and prosthesis design and performance characteristics have not yet been adequately investigated. The present study aims to address this knowledge gap. METHODS: A comprehensive single-cohort survey of 114 unilateral transfemoral amputees addressed a broad range of demographic and clinical characteristics, functional autonomy, satisfaction and attitudes towards their current prostheses, and design priorities for an ideal transfemoral prosthesis, including the possibility of active assistance from a robotic knee unit. The survey was custom-developed based on several standard questionnaires used to assess motor abilities and autonomy in activities of daily living, prosthesis satisfaction, and quality of life in lower-limb amputees. Survey data were analyzed to compare the experience (including autonomy and satisfaction) and design priorities of users of transfemoral prostheses with versus without microprocessor-controlled knee units (MPKs and NMPKs, respectively), with a subsequent analyses of cross-category correlation, principal component analysis (PCA), cost-sensitivity segmentation, and unsupervised K-means clustering applied within the most cost-sensitive participants, to identify functional groupings of users with respect to their design priorities. RESULTS: The cohort featured predominantly younger (< 50 years) traumatic male amputees with respect to the general transfemoral amputee population, with pronounced differences in age distribution and amputation etiology (traumatic vs. non-traumatic) between MPK and NMPK groups. These differences were further reflected in user experience, with MPK users reporting significantly greater overall functional autonomy, satisfaction, and sense of prosthesis ownership than those with NMPKs, in conjunction with a decreased incidence of instability and falls. Across all participants, the leading functional priorities for an ideal transfemoral prosthesis were overall stability, adaptability to variable walking velocity, and lifestyle-related functionality, while the highest-prioritized general characteristics were reliability, comfort, and weight, with highly variable prioritization of cost according to reimbursement status. PCA and user clustering analyses revealed the possibility for functionally relevant groupings of prosthesis features and users, based on their differential prioritization of these features-with implications towards prosthesis design tradeoffs. CONCLUSIONS: This study's findings support the understanding that when appropriately prescribed according to patient characteristics and needs in the context of a proactive rehabilitation program, advanced transfemoral prostheses promote patient mobility, autonomy, and overall health. Survey data indicate overall stability, modularity, and versatility as key design priorities for the continued development of transfemoral prosthesis technology. Finally, observed associations between prosthesis type, user experience, and attitudes concerning prosthesis ownership suggest both that prosthesis characteristics influence device acceptance and functional outcomes, and that psychosocial factors should be specifically and proactively addressed during the rehabilitation process.


Assuntos
Amputados , Membros Artificiais , Procedimentos Cirúrgicos Robóticos , Atividades Cotidianas , Amputação Cirúrgica , Amputados/reabilitação , Humanos , Masculino , Desenho de Prótese , Qualidade de Vida , Reprodutibilidade dos Testes , Inquéritos e Questionários , Design Centrado no Usuário , Caminhada
19.
Front Neurorobot ; 15: 709731, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690732

RESUMO

For decades, powered exoskeletons have been considered for possible employment in rehabilitation and personal use. Yet, these devices are still far from addressing the needs of users. Here, we introduce TWIN, a novel modular lower limb exoskeleton for personal use of spinal-cord injury (SCI) subjects. This system was designed according to a set of user requirements (lightweight and autonomous portability, quick and autonomous donning and setup, stability when standing/walking, cost effectiveness, long battery life, comfort, safety) which emerged during participatory investigations that organically involved patients, engineers, designers, physiatrists, and physical therapists from two major rehabilitation centers in Italy. As a result of this user-centered process, TWIN's design is based on a variety of small mechatronic modules which are meant to be easily assembled and donned on or off by the user in full autonomy. This paper presents the development of TWIN, an exoskeleton for personal use of SCI users, and the application of user-centered design methods that are typically adopted in medical device industry, for its development. We can state that this approach revealed to be extremely effective and insightful to direct and continuously adapt design goals and activities toward the addressment of user needs, which led to the development of an exoskeleton with modular mechatronics and novel lateral quick release systems. Additionally, this work includes the preliminary assessment of this exoskeleton, which involved healthy volunteers and a complete SCI patient. Tests validated the mechatronics of TWIN and emphasized its high potential in terms of system usability for its intended use. These tests followed procedures defined in existing standards in usability engineering and were part of the formative evaluation of TWIN as a premise to the summative evaluation of its usability as medical device.

20.
Artigo em Inglês | MEDLINE | ID: mdl-34648454

RESUMO

Myoelectrically Controlled Functional Electrical Stimulation (MeCFES) has proven to be a useful tool in the rehabilitation of the hemiplegic arm. This paper reports the steps involved in the development of a wearable MeCFES device (FITFES) through a user-centered design. We defined the minimal viable features and functionalities requirements for the device design from a questionnaire-based survey among physiotherapists with experience in functional electrical stimulation. The result was a necklace layout that poses minimal hindrance to task-oriented movement therapy, the context in which it is aimed to be used. FITFES is battery-powered and embeds a standard low power Bluetooth module, enabling wireless control by using PC/Mobile devices vendor specific built-in libraries. It is designed to deliver a biphasic, charge-balanced stimulation current pulses of up to 113 mA with a maximum differential voltage of 300 V. The power consumption for typical clinical usage is 320 mW at 20mA stimulation current and of less than [Formula: see text] in sleep mode, thus ensuring an estimated full day of FITFES therapy on a battery charge. We conclude that a multidisciplinary user-centered approach can be successfully applied to the design of a clinically and ergonomically viable prototype of a wearable myoelectrically controlled functional electrical stimulator to be used in rehabilitation.


Assuntos
Terapia por Estimulação Elétrica , Dispositivos Eletrônicos Vestíveis , Fontes de Energia Elétrica , Estimulação Elétrica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...