Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 73: 101740, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37211277

RESUMO

OBJECTIVE: Rodent models raised at environmental temperatures of 21-22 °C are increasingly switched to thermoneutral housing conditions in adulthood to better capture human physiology. We quantified the developmental effects of rearing mice at an ambient temperature of 22 °C vs. 30 °C on metabolic responses to cold and high fat diet (HFD) in adulthood. METHODS: Mice were reared from birth to 8 weeks of age at 22 °C or 30 °C, when they were acclimated to single housing at the same temperature for 2-3 weeks in indirect calorimetry cages. Energy expenditure attributable to basal metabolic rate, physical activity, thermic effect of food, and adaptive cold- or diet-induced thermogenesis was calculated. Responses to cooling were evaluated by decreasing the ambient temperature from 22 °C to 14 °C, while responses to HFD feeding were assessed at 30 °C. Influences of rearing temperature on thermogenic responses that emerge over hours, days and weeks were assessed by maintaining mice in the indirect calorimetry cages throughout the study. RESULTS: At an ambient temperature of 22 °C, total energy expenditure (TEE) was 12-16% higher in mice reared at 22 °C as compared to 30 °C. Rearing temperature had no effect on responses in the first hours or week of the 14 °C challenge. Differences emerged in the third week, when TEE increased an additional 10% in mice reared at 22 °C, but mice reared at 30 °C could not sustain this level of cold-induced thermogenesis. Rearing temperature only affected responses to HFD during the first week, due to differences in the timing but not the strength of metabolic adaptations. CONCLUSION: Rearing at 22 °C does not have a lasting effect on metabolic adaptations to HFD at thermoneutrality, but it programs an enhanced capacity to respond to chronic cold challenges in adulthood. These findings highlight the need to consider rearing temperature when using mice to model cold-induced thermogenesis.


Assuntos
Temperatura Baixa , Dieta Hiperlipídica , Humanos , Camundongos , Animais , Lactente , Temperatura , Dieta Hiperlipídica/efeitos adversos , Termogênese/fisiologia , Metabolismo Basal
2.
bioRxiv ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36824966

RESUMO

Females are more sensitive to social exclusion, which could contribute to their heightened susceptibility to anxiety disorders. Chronic social isolation stress (CSIS) for at least 7 weeks after puberty induces anxiety-related behavioral adaptations in female mice. Here, we show that Arginine vasopressin receptor 1a ( Avpr1a )-expressing neurons in the central nucleus of the amygdala (CeA) mediate these sex-specific effects, in part, via projections to the caudate putamen. Loss of function studies demonstrate that AVPR1A signaling in the CeA is required for effects of CSIS on anxiety-related behaviors in females but has no effect in males or group housed females. This sex-specificity is mediated by AVP produced by a subpopulation of neurons in the posterodorsal medial nucleus of the amygdala that project to the CeA. Estrogen receptor alpha signaling in these neurons also contributes to preferential sensitivity of females to CSIS. These data support new therapeutic applications for AVPR1A antagonists in women.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...