Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 72(3): 475-503, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37909340

RESUMO

Across the globe, approximately one in 10 babies are born preterm, that is, before 37 weeks of a typical 40 weeks of gestation. Up to 50% of preterm born infants develop brain injury, encephalopathy of prematurity (EoP), that substantially increases their risk for developing lifelong defects in motor skills and domains of learning, memory, emotional regulation, and cognition. We are still severely limited in our abilities to prevent or predict preterm birth. No longer just the "support cells," we now clearly understand that during development glia are key for building a healthy brain. Glial dysfunction is a hallmark of EoP, notably, microgliosis, astrogliosis, and oligodendrocyte injury. Our knowledge of glial biology during development is exponentially expanding but hasn't developed sufficiently for development of effective neuroregenerative therapies. This review summarizes the current state of knowledge for the roles of glia in infants with EoP and its animal models, and a description of known glial-cell interactions in the context of EoP, such as the roles for border-associated macrophages. The field of perinatal medicine is relatively small but has worked passionately to improve our understanding of the etiology of EoP coupled with detailed mechanistic studies of pre-clinical and human cohorts. A primary finding from this review is that expanding our collaborations with computational biologists, working together to understand the complexity of glial subtypes, glial maturation, and the impacts of EoP in the short and long term will be key to the design of therapies that improve outcomes.


Assuntos
Lesões Encefálicas , Nascimento Prematuro , Lactente , Gravidez , Animais , Feminino , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Neuroglia , Encéfalo
2.
PLoS Pathog ; 17(10): e1009991, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34610054

RESUMO

Corruption of cellular prion protein (PrPC) function(s) at the plasma membrane of neurons is at the root of prion diseases, such as Creutzfeldt-Jakob disease and its variant in humans, and Bovine Spongiform Encephalopathies, better known as mad cow disease, in cattle. The roles exerted by PrPC, however, remain poorly elucidated. With the perspective to grasp the molecular pathways of neurodegeneration occurring in prion diseases, and to identify therapeutic targets, achieving a better understanding of PrPC roles is a priority. Based on global approaches that compare the proteome and metabolome of the PrPC expressing 1C11 neuronal stem cell line to those of PrPnull-1C11 cells stably repressed for PrPC expression, we here unravel that PrPC contributes to the regulation of the energetic metabolism by orienting cells towards mitochondrial oxidative degradation of glucose. Through its coupling to cAMP/protein kinase A signaling, PrPC tones down the expression of the pyruvate dehydrogenase kinase 4 (PDK4). Such an event favors the transfer of pyruvate into mitochondria and its conversion into acetyl-CoA by the pyruvate dehydrogenase complex and, thereby, limits fatty acids ß-oxidation and subsequent onset of oxidative stress conditions. The corruption of PrPC metabolic role by pathogenic prions PrPSc causes in the mouse hippocampus an imbalance between glucose oxidative degradation and fatty acids ß-oxidation in a PDK4-dependent manner. The inhibition of PDK4 extends the survival of prion-infected mice, supporting that PrPSc-induced deregulation of PDK4 activity and subsequent metabolic derangements contribute to prion diseases. Our study posits PDK4 as a potential therapeutic target to fight against prion diseases.


Assuntos
Glucose/metabolismo , Degeneração Neural/metabolismo , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/patologia , Estresse Oxidativo/fisiologia , Proteínas Quinases/metabolismo
3.
Elife ; 102021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34544550

RESUMO

Aging is associated with central fat redistribution and insulin resistance. To identify age-related adipose features, we evaluated the senescence and adipogenic potential of adipose-derived stromal cells (ASCs) from abdominal subcutaneous fat obtained from healthy normal-weight young (<25 years) or older women (>60 years). Increased cell passages of young-donor ASCs (in vitro aging) resulted in senescence but not oxidative stress. ASC-derived adipocytes presented impaired adipogenesis but no early mitochondrial dysfunction. Conversely, aged-donor ASCs at early passages displayed oxidative stress and mild senescence. ASC-derived adipocytes exhibited oxidative stress, and early mitochondrial dysfunction but adipogenesis was preserved. In vitro aging of aged-donor ASCs resulted in further increased senescence, mitochondrial dysfunction, oxidative stress, and severe adipocyte dysfunction. When in vitro aged young-donor ASCs were treated with metformin, no alteration was alleviated. Conversely, metformin treatment of aged-donor ASCs decreased oxidative stress and mitochondrial dysfunction resulting in decreased senescence. Metformin's prevention of oxidative stress and of the resulting senescence improved the cells' adipogenic capacity and insulin sensitivity. This effect was mediated by the activation of AMP-activated protein kinase as revealed by its specific inhibition and activation. Overall, aging ASC-derived adipocytes presented impaired adipogenesis and insulin sensitivity. Targeting stress-induced senescence of ASCs with metformin may improve age-related adipose tissue dysfunction.


Assuntos
Adipócitos/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Metformina/farmacologia , Proteínas Quinases Ativadas por AMP , Adipócitos/metabolismo , Adipócitos/patologia , Envelhecimento/patologia , Células Cultivadas , Feminino , Humanos , Resistência à Insulina , Pessoa de Meia-Idade , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Adulto Jovem
4.
Vaccines (Basel) ; 9(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921113

RESUMO

The COVID-19 pandemic is ongoing and we are still compiling new findings to decipher and understand SARS-CoV-2 infection during pregnancy. No reports encompass any conclusive confirmation of vertical transmission. Nevertheless, cases of fetal distress and multiple organ failure have been reported, as well as rare cases of fetal demise. While clinicians and scientists continue to seek proof of vertical transmission, they miss the greater point, namely the cause of preterm delivery. In this review, we suggest that the cause might not be due to the viral infection but the fetal exposure to maternal inflammation or cytokine storm that translates into a complication of COVID-19. This statement is extrapolated from previous experience with infections and inflammation which were reported to be fatal by increasing the risk of preterm delivery and causing abnormal neonatal brain development and resulting in neurological disorders like atypical behavioral phenotype or autistic syndrome. Given the potentially fatal consequences on neonate health, we highlight the urgent need for an animal model to study vertical transmission. The preclinical model will allow us to make the link between SARS-COV-2 infection, inflammation and long-term follow-up of child brain development.

5.
Nat Rev Immunol ; 20(9): 579, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32778830

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nat Rev Immunol ; 20(9): 515-516, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32728221

Assuntos
Antioxidantes/uso terapêutico , Betacoronavirus/patogenicidade , Infecções por Coronavirus/tratamento farmacológico , Pulmão/imunologia , Neutrófilos/efeitos dos fármacos , Pneumonia Viral/tratamento farmacológico , Acetilcisteína/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/imunologia , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Citocinas/genética , Citocinas/imunologia , Quimioterapia Combinada , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Regulação da Expressão Gênica , Glicina/análogos & derivados , Glicina/uso terapêutico , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Imunidade Inata/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/virologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/virologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Neutrófilos/imunologia , Neutrófilos/virologia , Estresse Oxidativo/efeitos dos fármacos , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Proteínas Secretadas Inibidoras de Proteinases/uso terapêutico , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , SARS-CoV-2 , Índice de Gravidade de Doença , Sulfonamidas/uso terapêutico , Superóxido Dismutase/genética , Superóxido Dismutase/imunologia
7.
J Immunol ; 204(7): 1869-1880, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32132181

RESUMO

Leishmaniases are neglected tropical diseases. The treatment of leishmaniasis relies exclusively on chemotherapy including amphotericin B (AmB), miltefosine (hexadecylphosphocholine), and pentamidine. Besides the fact that these molecules are harmful for patients, little is known about the impact of such antileishmanial drugs on primary human cells in relation to immune function. The present study demonstrates that all antileishmanial drugs inhibit CD4 and CD8 T cell proliferation at the doses that are not related to increased cell death. Our results highlight that antileishmanial drugs have an impact on monocytes by altering the expression of IL-12 induced by LPS, whereas only AmB induced IL-10 secretion; both cytokines are essential in regulating Th1 cell-mediated immunity. Interestingly, IL-12 and anti-IL-10 Abs improved T cell proliferation inhibited by AmB. Furthermore, our results show that in contrast to hexadecylphosphocholine and pentamidine, AmB induced gene expression of the inflammasome pathway. Thus, AmB induced IL-1ß and IL-18 secretions, which are reduced by specific inhibitors of caspase activation (Q-VD) and NLRP3 activation (MCC950). Our results reveal previously underestimated effects of antileishmanial drugs on primary human cells.


Assuntos
Antiparasitários/farmacologia , Inflamassomos/efeitos dos fármacos , Interleucina-12/metabolismo , Leishmania/genética , Leishmaniose/tratamento farmacológico , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-10/metabolismo , Leishmania/metabolismo , Leishmaniose/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Mucosal Immunol ; 12(4): 1038-1054, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31114010

RESUMO

Mesenteric lymph nodes (MLNs), that drain the large and small intestine, are critical sites for the induction of oral tolerance. Although depletion of CD4 T cells in the intestinal lamina propria is a hallmark of HIV infection, CD4 T cell dynamics in MLNs is less known due to the lack of accessibility to these LNs. We demonstrate the early loss of memory CD4 T cells, including T follicular helper cells (Tfh) and a remodeling of MLN architecture in SIV-infected rhesus macaques (RMs). Along with the loss of Tfh cells, we observe the loss of memory B cells and of germinal center B cells. Tfh cells display a Th1 profile with increased levels of the transcription factors that negatively impact on Tfh differentiation and of Stat5 phosphorylation. MLNs of SIV-infected RMs display lower mRNA transcripts encoding for IL-12, IL-23, and IL-35, whereas those coding for IL-27 are not impaired in MLNs. In vitro, IL-27 negatively impacts on Tfh cells and recapitulates the profile observed in SIV-infected RMs. Therefore, early defects of memory CD4 T cells, as well of Tfh cells in MLNs, which play a central role in regulating the mucosal immune response, may have major implications for Aids.


Assuntos
Interleucina-27/metabolismo , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Vírus da Imunodeficiência Símia/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Expressão Gênica , Imuno-Histoquímica , Memória Imunológica , Imunofenotipagem , Interleucina-27/genética , Linfonodos/imunologia , Linfonodos/metabolismo , Contagem de Linfócitos , Macaca mulatta , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia
9.
Exp Suppl ; 109: 221-233, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30535601

RESUMO

Microbes have developed a series of strategies to overcome the defense mechanisms of the infected host. During pathogen-host coevolution, they develop strategy to manipulate cellular machinery particularly in subverting mitochondrion function. Mitochondria are highly dynamic organelles that constantly remodel their structure. In particular, shaping and cellular distribution of the mitochondrial network is maintained in large part by the conserved activities of mitochondrial division, fusion, motility, and tethering. Mitochondria have been long recognized for their role in providing energy production, calcium metabolism, and apoptosis. More recently, mitochondria have been also shown to serve as a platform for innate immune response. In this context, mitochondrial dynamics and shaping is not only essential to maintain cristae structure and bioenergetic to fuel cellular demands but contribute to regulate cellular function such as innate immune response and mitochondrial permeabilization. Due to their key role in cell survival, mitochondria represent attractive targets for pathogens. Therefore, microbes by manipulating mitochondrial dynamics may escape to host cellular control. Herein, we describe how mitochondrial bioenergetics, dynamics, and shaping are impacted during microbe infections and how this interplay benefits to pathogens contributing to the diseases.


Assuntos
Metabolismo Energético , Imunidade Inata , Infecções/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Humanos
10.
J Clin Invest ; 128(4): 1627-1640, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29553486

RESUMO

Apoptosis has been proposed as a key mechanism responsible for CD4+ T cell depletion and immune dysfunction during HIV infection. We demonstrated that Q-VD-OPH, a caspase inhibitor, inhibits spontaneous and activation-induced death of T cells from SIV-infected rhesus macaques (RMs). When administered during the acute phase of infection, Q-VD-OPH was associated with (a) reduced levels of T cell death, (b) preservation of CD4+/CD8+ T cell ratio in lymphoid organs and in the gut, (c) maintenance of memory CD4+ T cells, and (d) increased specific CD4+ T cell response associated with the expression of cytotoxic molecules. Although therapy was limited to the acute phase of infection, Q-VD-OPH-treated RMs showed lower levels of both viral load and cell-associated SIV DNA as compared with control SIV-infected RMs throughout the chronic phase of infection, and prevented the development of AIDS. Overall, our data demonstrate that Q-VD-OPH injection in SIV-infected RMs may represent an adjunctive therapeutic agent to control HIV infection and delaying disease progression to AIDS.


Assuntos
Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Clorometilcetonas de Aminoácidos/farmacologia , Inibidores de Caspase/farmacologia , Quinolinas/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/metabolismo , Síndrome da Imunodeficiência Adquirida/enzimologia , Síndrome da Imunodeficiência Adquirida/patologia , Animais , Relação CD4-CD8 , Linfócitos T CD4-Positivos/enzimologia , Linfócitos T CD4-Positivos/patologia , Progressão da Doença , Feminino , Depleção Linfocítica , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/enzimologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia
11.
Front Immunol ; 8: 135, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28265271

RESUMO

Follicular T helper (Tfh) cells, a subset of CD4 T lymphocytes, are essential for memory B cell activation, survival, and differentiation and assist B cells in the production of antigen-specific antibodies. Work performed in recent years pointed out the importance of Tfh cells in the context of HIV and SIV infections. The importance of tissue distribution of Tfh is also an important point since their frequency differs between peripheral blood and lymph nodes compared to the spleen, the primary organ for B cell activation, and differentiation. Our recent observations indicated an early and profound loss of splenic Tfh cells. The role of transcriptional activator and repressor factors that control Tfh differentiation is also discussed in the context of HIV/SIV infection. Because Tfh cells are important for B cell differentiation and antibody production, accelerating the Tfh responses early during HIV/SIV infection could be promising as novel immunotherapeutic approach or alternative vaccine strategies. However, because Tfh cells are infected during the HIV/SIV infection and represent a reservoir, this may interfere with HIV vaccine strategy. Thus, Tfh represent the good and bad guys during HIV infection.

12.
Exp Suppl ; 107: 287-323, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812985

RESUMO

During host-pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host-pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Bactérias/metabolismo , Fungos/enzimologia , Interações Hospedeiro-Patógeno/genética , Vírus/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/imunologia , Anti-Infecciosos/uso terapêutico , Autofagia/efeitos dos fármacos , Autofagia/imunologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/enzimologia , Infecções Bacterianas/genética , Infecções Bacterianas/virologia , Fungos/efeitos dos fármacos , Fungos/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Imunidade Inata/efeitos dos fármacos , Terapia de Alvo Molecular , Micoses/tratamento farmacológico , Micoses/enzimologia , Micoses/genética , Micoses/virologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/imunologia , Transdução de Sinais , Viroses/tratamento farmacológico , Viroses/enzimologia , Viroses/genética , Viroses/virologia , Vírus/efeitos dos fármacos , Vírus/genética
13.
PLoS One ; 11(4): e0152919, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27054921

RESUMO

UNLABELLED: Chronic inflammation of the gastrointestinal tract increasing the risk of cancer has been described to be linked to the high expression of the mitochondrial translocator protein (18 kDa; TSPO). Accordingly, TSPO drug ligands have been shown to regulate cytokine production and to improve tissue reconstruction. We used HT-29 human colon carcinoma cells to evaluate the role of TSPO and its drug ligands in tumor necrosis factor (TNF)-induced inflammation. TNF-induced interleukin (IL)-8 expression, coupled to reactive oxygen species (ROS) production, was followed by TSPO overexpression. TNF also destabilized mitochondrial ultrastructure, inducing cell death by apoptosis. Treatment with the TSPO drug ligand PK 11195 maintained the mitochondrial ultrastructure, reducing IL-8 and ROS production and cell death. TSPO silencing and overexpression studies demonstrated that the presence of TSPO is essential to control IL-8 and ROS production, so as to maintain mitochondrial ultrastructure and to prevent cell death. Taken together, our data indicate that inflammation results in the disruption of mitochondrial complexes containing TSPO, leading to cell death and epithelia disruption. SIGNIFICANCE: This work implicates TSPO in the maintenance of mitochondrial membrane integrity and in the control of mitochondrial ROS production, ultimately favoring tissue regeneration.


Assuntos
Colo/metabolismo , Neoplasias do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica , Mitocôndrias/metabolismo , Proteínas de Neoplasias/biossíntese , Receptores de GABA/biossíntese , Estresse Fisiológico , Morte Celular , Linhagem Celular Tumoral , Colo/patologia , Neoplasias do Colo/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Interleucina-8/biossíntese , Mitocôndrias/patologia , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/efeitos adversos , Fator de Necrose Tumoral alfa/farmacologia
14.
Parasit Vectors ; 9: 118, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26932389

RESUMO

Unicellular eukaryotes of the genus Leishmania are collectively responsible for a heterogeneous group of diseases known as leishmaniasis. The visceral form of leishmaniasis, caused by L. donovani or L. infantum, is a devastating condition, claiming 20,000 to 40,000 lives annually, with particular incidence in some of the poorest regions of the world. Immunity to Leishmania depends on the development of protective type I immune responses capable of activating infected phagocytes to kill intracellular amastigotes. However, despite the induction of protective responses, disease progresses due to a multitude of factors that impede an optimal response. These include the action of suppressive cytokines, exhaustion of specific T cells, loss of lymphoid tissue architecture and a defective humoral response. We will review how these responses are orchestrated during the course of infection, including both early and chronic stages, focusing on the spleen and the liver, which are the main target organs of visceral Leishmania in the host. A comprehensive understanding of the immune events that occur during visceral Leishmania infection is crucial for the implementation of immunotherapeutic approaches that complement the current anti-Leishmania chemotherapy and the development of effective vaccines to prevent disease.


Assuntos
Interações Hospedeiro-Patógeno , Leishmania/imunologia , Leishmania/fisiologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/patologia , Imunidade Adaptativa , Animais , Humanos , Imunidade Celular , Imunidade Humoral , Imunidade Inata , Leishmaniose Visceral/parasitologia , Fígado/imunologia , Fígado/parasitologia , Fígado/patologia , Baço/imunologia , Baço/parasitologia , Baço/patologia
16.
Cell Mol Life Sci ; 73(6): 1225-36, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26718485

RESUMO

Nicotinamide adenine dinucleotide (NAD(+)) is a vital molecule found in all living cells. NAD(+) intracellular levels are dictated by its synthesis, using the de novo and/or salvage pathway, and through its catabolic use as co-enzyme or co-substrate. The regulation of NAD(+) metabolism has proven to be an adequate drug target for several diseases, including cancer, neurodegenerative or inflammatory diseases. Increasing interest has been given to NAD(+) metabolism during innate and adaptive immune responses suggesting that its modulation could also be relevant during host-pathogen interactions. While the maintenance of NAD(+) homeostatic levels assures an adequate environment for host cell survival and proliferation, fluctuations in NAD(+) or biosynthetic precursors bioavailability have been described during host-pathogen interactions, which will interfere with pathogen persistence or clearance. Here, we review the double-edged sword of NAD(+) metabolism during host-pathogen interactions emphasizing its potential for treatment of infectious diseases.


Assuntos
Interações Hospedeiro-Patógeno , NAD/metabolismo , Animais , Infecções Bacterianas/metabolismo , Fenômenos Fisiológicos Bacterianos , Vias Biossintéticas , Entamoeba/fisiologia , Entamebíase/metabolismo , Humanos , Leishmania/fisiologia , Leishmaniose/metabolismo , Malária/metabolismo , Plasmodium/fisiologia , Viroses/metabolismo , Fenômenos Fisiológicos Virais
17.
PLoS Pathog ; 11(12): e1005287, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26640894

RESUMO

Follicular T helper cells (Tfh), a subset of CD4 T lymphocytes, provide crucial help to B cells in the production of antigen-specific antibodies. Although several studies have analyzed the dynamics of Tfh cells in peripheral blood and lymph nodes (LNs) during Aids, none has yet addressed the impact of SIV infection on the dynamics of Tfh cells in the spleen, the primary organ of B cell activation. We show here a significant decrease in splenic Tfh cells in SIVmac251-infected rhesus macaques (RMs) during the acute phase of infection, which persists thereafter. This profound loss is associated with lack of sustained expression of the Tfh-defining transcription factors, Bcl-6 and c-Maf but with higher expression of the repressors KLF2 and Foxo1. In this context of Tfh abortive differentiation and loss, we found decreased percentages of memory B cell subsets and lower titers of SIV-specific IgG. We further demonstrate a drastic remodeling of the lymphoid architecture of the spleen and LNs, which disrupts the crucial cell-cell interactions necessary to maintain memory B cells and Tfh cells. Finally, our data demonstrated the early infection of Tfh cells. Paradoxically, the frequencies of SIV DNA were higher in splenic Tfh cells of RMs progressing more slowly suggesting sanctuaries for SIV in the spleen. Our findings provide important information regarding the impact of HIV/SIV infection on Tfh cells, and provide new clues for future vaccine strategies.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Baço/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Separação Celular , Imunofluorescência , Imunofenotipagem , Macaca mulatta , Microscopia Confocal , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
PLoS Pathog ; 11(3): e1004684, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25738568

RESUMO

Metabolic manipulation of host cells by intracellular pathogens is currently recognized to play an important role in the pathology of infection. Nevertheless, little information is available regarding mitochondrial energy metabolism in Leishmania infected macrophages. Here, we demonstrate that during L. infantum infection, macrophages switch from an early glycolytic metabolism to an oxidative phosphorylation, and this metabolic deviation requires SIRT1 and LKB1/AMPK. SIRT1 or LBK1 deficient macrophages infected with L. infantum failed to activate AMPK and up-regulate its targets such as Slc2a4 and Ppargc1a, which are essential for parasite growth. As a result, impairment of metabolic switch caused by SIRT1 or AMPK deficiency reduces parasite load in vitro and in vivo. Overall, our work demonstrates the importance of SIRT1 and AMPK energetic sensors for parasite intracellular survival and proliferation, highlighting the modulation of these proteins as potential therapeutic targets for the treatment of leishmaniasis.


Assuntos
Proteínas Quinases Ativadas por AMP/imunologia , Evasão da Resposta Imune , Leishmania infantum/imunologia , Leishmaniose Visceral/imunologia , Macrófagos , Mitocôndrias/imunologia , Sirtuína 1/imunologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/imunologia , Leishmaniose Visceral/genética , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fosforilação Oxidativa , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Sirtuína 1/genética , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
19.
PLoS Pathog ; 10(4): e1004096, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24763747

RESUMO

Leishmania infantum causes a chronic infectious disease named visceral leishmaniasis (VL). We employed a non-human primate model to monitor immune parameters over time and gain new insights into the disease. Rhesus macaques were infected with L. infantum and the T helper and B cell immunological profiles characterized during acute and chronic phases of infection. Parasite detection in visceral compartments during the acute phase was associated with differentiation of effector memory CD4 T cells and increased levels of Th1 transcripts. At the chronic phase, parasites colonized novel lymphoid niches concomitant with increased expression of IL10. Despite the occurrence of hypergammaglobulinemia, the production of parasite-specific IgG was poor, being confined to the acute phase and positively correlated with the frequency of an activated memory splenic B cell population. We noticed the expansion of a splenic CD4 T cell population expressing CXCR5 and Bcl-6 during acute infection that was associated with the differentiation of the activated memory B cell population. Moreover, the number of splenic germinal centers peaked at one month after infection, hence paralleling the production of specific IgG. However, at chronic infection these populations contracted impacting the production of parasite-specific IgG. Our study provides new insights into the immune events taking place in a physiologically relevant host and a mechanistic basis for the inefficient humoral response during VL.


Assuntos
Centro Germinativo/imunologia , Imunidade Humoral , Leishmania infantum/imunologia , Leishmaniose Visceral/imunologia , Baço/imunologia , Células Th1/imunologia , Animais , Feminino , Regulação da Expressão Gênica/imunologia , Centro Germinativo/parasitologia , Centro Germinativo/patologia , Interleucina-10/imunologia , Leishmaniose Visceral/patologia , Macaca mulatta , Masculino , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Receptores CXCR5/imunologia , Baço/parasitologia , Baço/patologia , Células Th1/patologia
20.
PLoS Negl Trop Dis ; 8(2): e2567, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24551250

RESUMO

In mammals subverted as hosts by protozoan parasites, the latter and/or the agonists they release are detected and processed by sensors displayed by many distinct immune cell lineages, in a tissue(s)-dependent context. Focusing on the T lymphocyte lineage, we review our present understanding on its transient or durable functional impairment over the course of the developmental program of the intracellular parasites Leishmania spp., Plasmodium spp., Toxoplasma gondii, and Trypanosoma cruzi in their mammalian hosts. Strategies employed by protozoa to down-regulate T lymphocyte function may act at the initial moment of naïve T cell priming, rendering T cells anergic or unresponsive throughout infection, or later, exhausting T cells due to antigen persistence. Furthermore, by exploiting host feedback mechanisms aimed at maintaining immune homeostasis, parasites can enhance T cell apoptosis. We will discuss how infections with prominent intracellular protozoan parasites lead to a general down-regulation of T cell function through T cell anergy and exhaustion, accompanied by apoptosis, and ultimately allowing pathogen persistence.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Parasitos , Doenças Parasitárias , Linfócitos T , Animais , Humanos , Modelos Imunológicos , Parasitos/imunologia , Parasitos/patogenicidade , Parasitos/fisiologia , Doenças Parasitárias/imunologia , Doenças Parasitárias/parasitologia , Linfócitos T/imunologia , Linfócitos T/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...