Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(58): 122219-122229, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37966644

RESUMO

The objective of this work was to develop a polymeric structure for a biofiltration unit of domestic effluents through microbiological immobilization, capable of promoting the efficient removal of pollutants, meeting local/national Brazilian standards and/or legislation while providing low environmental impact on their production. Four different structures were tested, namely, polypropylene casings without filling material (TF1); polypropylene casings filled with expanded polystyrene grains (TF2); polypropylene casings, filled with polyurethane foam (TF3); and polypropylene casings, filled with polyvinyl chloride pellets (TF4). A flow of 0.216 m3 d-1 was applied to the system, and the biofilters operated in sequential batches with a hydraulic retention time of 6 h. The efficiency potential of the four immobilization structures was verified regarding biochemical and chemical oxygen demand, total ammoniacal nitrogen and total phosphorus. Microbiological analysis of the formed biofilm, performed with the 16S library sequencing method, with amplification of the 16S rRNA V3 and V3-V4 genomic regions, showed a high diversity of microbiological colonization in the four immobilization structures, with better results and consequently greater community stability in TF2. It is recommended using the filter bed made up of unfilled casings, followed by the one filled with expanded polystyrene grains.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Brasil , Poliestirenos , RNA Ribossômico 16S , Polipropilenos , Reatores Biológicos , Biofilmes , Nitrogênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...