Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chimia (Aarau) ; 78(6): 384-389, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38946410

RESUMO

Curious about how chemistry can contribute to sustainable development? In this overview, we explain the essence of NCCR funding, the research focus and structural goals of NCCR Catalysis, and how these align with the sustainable development goals (SDGs). Additionally, we highlight opportunities for getting involved with our program.

4.
Nat Mater ; 19(11): 1140-1150, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33020614

RESUMO

Green hydrogen production using renewables-powered, low-temperature water electrolysers is crucial for rapidly decarbonizing the industrial sector and with it many chemical transformation processes. However, despite decades of research, advances at laboratory scale in terms of catalyst design and insights into underlying processes have not resulted in urgently needed improvements in water electrolyser performance or higher deployment rates. In light of recent developments in water electrolyser devices with modified architectures and designs integrating concepts from Li-ion or redox flow batteries, we discuss practical challenges hampering the scaling-up and large-scale deployment of water electrolysers. We highlight the role of device architectures and designs, and how engineering concepts deserve to be integrated into fundamental research to accelerate synergies between materials science and engineering, and also to achieve industry-scale deployment. New devices require benchmarking and assessment in terms of not only their performance metrics, but also their scalability and deployment potential.

5.
ACS Appl Mater Interfaces ; 8(48): 32637-32642, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934143

RESUMO

The microstructure of lithium-ion battery separators plays an important role in separator performance; however, here we show that a geometrical analysis falls short in predicting the lithium-ion transport in the electrolyte-filled pore space. By systematically modifying the surface chemistry of a commercial polyethylene separator while keeping its microstructure unchanged, we demonstrate that surface chemistry, which alters separator-electrolyte interactions, influences ionic conductivity and lithium-ion transference number. Changes in separator surface chemistry, particularly those that increase lithium-ion transference numbers can reduce voltage drops across the separator and improve C-rate capability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...