Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(1): 19, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214870

RESUMO

KEY MESSAGE: Implementing a collaborative pre-breeding multi-parental population efficiently identifies promising donor x elite pairs to enrich the flint maize elite germplasm. Genetic diversity is crucial for maintaining genetic gains and ensuring breeding programs' long-term success. In a closed breeding program, selection inevitably leads to a loss of genetic diversity. While managing diversity can delay this loss, introducing external sources of diversity is necessary to bring back favorable genetic variation. Genetic resources exhibit greater diversity than elite materials, but their lower performance levels hinder their use. This is the case for European flint maize, for which elite germplasm has incorporated only a limited portion of the diversity available in landraces. To enrich the diversity of this elite genetic pool, we established an original cooperative maize bridging population that involves crosses between private elite materials and diversity donors to create improved genotypes that will facilitate the incorporation of original favorable variations. Twenty donor × elite BC1S2 families were created and phenotyped for hybrid value for yield related traits. Crosses showed contrasted means and variances and therefore contrasted potential in terms of selection as measured by their usefulness criterion (UC). Average expected mean performance gain over the initial elite material was 5%. The most promising donor for each elite line was identified. Results also suggest that one more generation, i.e., 3 in total, of crossing to the elite is required to fully exploit the potential of a donor. Altogether, our results support the usefulness of incorporating genetic resources into elite flint maize. They call for further effort to create fixed diversity donors and identify those most suitable for each elite program.


Assuntos
Melhoramento Vegetal , Zea mays , Humanos , Zea mays/genética , Fenótipo , Genótipo , Variação Genética
2.
Theor Appl Genet ; 136(11): 219, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816986

RESUMO

KEY MESSAGE: An original GWAS model integrating the ancestry of alleles was proposed and allowed the detection of background specific additive and dominance QTLs involved in heterotic group complementarity and hybrid performance. Maize genetic diversity is structured into genetic groups selected and improved relative to each other. This process increases group complementarity and differentiation over time and ensures that the hybrids produced from inter-group crosses exhibit high performances and heterosis. To identify loci involved in hybrid performance and heterotic group complementarity, we introduced an original association study model that disentangles allelic effects from the heterotic group origin of the alleles and compared it with a conventional additive/dominance model. This new model was applied on a factorial between Dent and Flint lines and a diallel between Dent-Flint admixed lines with two different layers of analysis: within each environment and in a multiple-environment context. We identified several strong additive QTLs for all traits, including some well-known additive QTLs for flowering time (in the region of Vgt1/2 on chromosome 8). Yield trait displayed significant non-additive effects in the diallel panel. Most of the detected Yield QTLs exhibited overdominance or, more likely, pseudo-overdominance effects. Apparent overdominance at these QTLs contributed to a part of the genetic group complementarity. The comparison between environments revealed a higher stability of additive QTL effects than non-additive ones. Several QTLs showed variations of effects according to the local heterotic group origin. We also revealed large chromosomic regions that display genetic group origin effects. Altogether, our results illustrate how admixed panels combined with dedicated GWAS modeling allow the identification of new QTLs that could not be revealed by a classical hybrid panel analyzed with traditional modeling.


Assuntos
Vigor Híbrido , Zea mays , Mapeamento Cromossômico/métodos , Zea mays/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...