Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1416538, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011310

RESUMO

Optimization of a breeding program requires assessing and quantifying empirical genetic trends made through past efforts relative to the current breeding strategies, germplasm, technologies, and policy. To establish the genetic trends in the Kenyan Highland Maize Breeding Program (KHMP), a two-decade (1999-2020) historical dataset from the Preliminary Variety Trials (PVT) and Advanced Variety Trials (AVT) was analyzed. A mixed model analysis was used to compute the genetic gains for traits based on the best linear unbiased estimates in the PVT and AVT evaluation stages. A positive significant genetic gain estimate for grain yield of 88 kg ha-1 year-1 (1.94% year-1) and 26 kg ha-1 year-1 (0.42% year-1) was recorded for PVT and AVT, respectively. Root lodging, an important agronomic trait in the Kenya highlands, had a desired genetic gain of -2.65% year-1 for AVT. Results showed improvement in resistance to Turcicum Leaf Blight (TLB) with -1.19% and -0.27% year-1 for the PVT and AVT, respectively. Similarly, a significant genetic trend of -0.81% was noted for resistance to Gray Leaf Spot (GLS) in AVT. These findings highlight the good progress made by KHMP in developing adapted maize hybrids for Kenya's highland agroecology. Nevertheless, the study identified significant opportunities for the KHMP to make even greater genetic gains for key traits with introgression of favorable alleles for various traits, implementing a continuous improvement plan including marker-assisted forward breeding, sparse testing, and genomic selection, and doubled haploid technology for line development.

2.
Lancet Glob Health ; 7(1): e81-e95, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30482677

RESUMO

BACKGROUND: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 provided comprehensive estimates of health loss globally. Decision makers in Kenya can use GBD subnational data to target health interventions and address county-level variation in the burden of disease. METHODS: We used GBD 2016 estimates of life expectancy at birth, healthy life expectancy, all-cause and cause-specific mortality, years of life lost, years lived with disability, disability-adjusted life-years, and risk factors to analyse health by age and sex at the national and county levels in Kenya from 1990 to 2016. FINDINGS: The national all-cause mortality rate decreased from 850·3 (95% uncertainty interval [UI] 829·8-871·1) deaths per 100 000 in 1990 to 579·0 (562·1-596·0) deaths per 100 000 in 2016. Under-5 mortality declined from 95·4 (95% UI 90·1-101·3) deaths per 1000 livebirths in 1990 to 43·4 (36·9-51·2) deaths per 1000 livebirths in 2016, and maternal mortality fell from 315·7 (242·9-399·4) deaths per 100 000 in 1990 to 257·6 (195·1-335·3) deaths per 100 000 in 2016, with steeper declines after 2006 and heterogeneously across counties. Life expectancy at birth increased by 5·4 (95% UI 3·7-7·2) years, with higher gains in females than males in all but ten counties. Unsafe water, sanitation, and handwashing, unsafe sex, and malnutrition were the leading national risk factors in 2016. INTERPRETATION: Health outcomes have improved in Kenya since 2006. The burden of communicable diseases decreased but continues to predominate the total disease burden in 2016, whereas the non-communicable disease burden increased. Health gains varied strikingly across counties, indicating targeted approaches for health policy are necessary. FUNDING: Bill & Melinda Gates Foundation.


Assuntos
Pessoal Administrativo , Carga Global da Doença/estatística & dados numéricos , Política de Saúde , Disparidades nos Níveis de Saúde , Humanos , Quênia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...