Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Isotopes Environ Health Stud ; 60(2): 103-121, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38344763

RESUMO

The biogeochemical consequences of dihydrogen (H2) underground storage in porous aquifers are poorly understood. Here, the effects of nutrient limitations on anaerobic H2 oxidation of an aquifer microbial community in sediment microcosms were determined in order to evaluate possible responses to high H2 partial pressures. Hydrogen isotope analyses of H2 yielded isotope depletion in all biotic setups indicating microbial H2 consumption. Carbon isotope analyses of carbon dioxide (CO2) showed isotope enrichment in all H2-supplemented biotic setups indicating H2-dependent consumption of CO2 by methanogens or homoacetogens. Homoacetogenesis was indicated by the detection of acetate and formate. Consumption of CO2 and H2 varied along the differently nutrient-amended setups, as did the onset of methane production. Plotting carbon against hydrogen isotope signatures of CH4 indicated that CH4 was produced hydrogenotrophically and fermentatively. The putative hydrogenotrophic Methanobacterium sp. was the dominant methanogen. Most abundant phylotypes belonged to typical ferric iron reducers, indicating that besides CO2, Fe(III) was an important electron acceptor. In summary, our study provides evidence for the adaptability of subsurface microbial communities under different nutrient-deficient conditions to elevated H2 partial pressures.


Assuntos
Água Subterrânea , Microbiota , Anaerobiose , Metano/análise , Dióxido de Carbono , Compostos Férricos , Isótopos de Carbono/análise , Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...