Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(1): 39, 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38142428

RESUMO

Two motile, rod-shaped, Gram-stain-negative bacterial strains, TNT11T and TNT19T, were isolated from soil samples collected at Deception Island, Antarctica. According to the 16S rRNA gene sequence similarity, both strains belong to the genus Pseudomonas. Further genomic analyses based on ANI and dDDH suggested that these strains were new species. Growth of strain TNT11T is observed at 0-30 â„ƒ (optimum, 20 â„ƒ), pH 4.0-9.0 (optimum, pH 6.0) and in the presence of 0-5.0% NaCl (optimum, 1% NaCl), while for TNT19T is observed at 0-30 â„ƒ (optimum between 15 and 20 â„ƒ), pH 5.0-9.0 (optimum, pH 6.0) and in the presence of 0-5.0% NaCl (optimum between 0 and 1% NaCl). The fatty acid profile consists of the major compounds; C16:0 and C16:1 ω6 for TNT11T, and C16:0 and C12:0 for TNT19T. Based on the draft genome sequences, the DNA G + C content for TNT11T is 60.43 mol% and 58.60 mol% for TNT19T. Based on this polyphasic study, TNT11T and TNT19T represent two novel species of the genus Pseudomonas, for which the proposed names are Pseudomonas violetae sp. nov. and Pseudomonas emilianonis sp. nov., respectively. The type strains are Pseudomonas violetae TNT11T (= RGM 3443T = LMG 32959T) and Pseudomonas emilianonis TNT19T (= RGM 3442T = LMG 32960T). Strains TNT11T and TNT19T were deposited to CChRGM and BCCM/LMG with entry numbers RGM 3443/LMG 32959 and RGM 3442/LMG 32960, respectively.


Assuntos
Fosfolipídeos , Pseudomonas , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Regiões Antárticas , Pseudomonas/genética , Cloreto de Sódio , DNA Bacteriano/genética , Análise de Sequência de DNA , Hibridização de Ácido Nucleico , Filogenia , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Enganação , Solo
2.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37861393

RESUMO

A Gram-stain-positive, catalase-positive, non-motile bacteria, with a rod-coccus cycle (designated as EH-1B-1T) was isolated from a soil sample from Union Glacier in Ellsworth Mountains, Antarctica. Strain EH-1B-1T had an optimal growth temperature of 28 °C and grew at pH 7-10. The major cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0, C16 : 0 and anteiso-C17 : 0. The G+C content based on the whole genome sequence was 63.1 mol%. Strain EH-1B-1T was most closely related to members of the genus Arthrobacter, namely Arthrobacter subterraneus and Arthrobacter tumbae. The strain grew on tryptic soy agar, Reasoner's 2A agar, lysogeny broth agar and nutrient agar. The average nucleotide identity and digital DNA-DNA hybridization values between strain EH-1B-1T and its closest reference type strains ranged from 78 to 88 % and from 20.9 to 36.3 %, respectively. Based on phenotypic, chemotypic and genotypic evidence, it is proposed that strain EH-1B-1T represents a novel species of Arthrobacter, for which the name Arthrobacter vasquezii sp. nov. is proposed, with strain EH-1B-1T (RGM 3386T=LMG 32961T) as the type strain.


Assuntos
Arthrobacter , Ácidos Graxos , Ácidos Graxos/química , Fosfolipídeos/química , Camada de Gelo , Regiões Antárticas , Ágar , Composição de Bases , Filogenia , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2/química , Peptidoglicano/química , Solo
3.
Anaerobe ; 45: 3-9, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28254263

RESUMO

Clostridium difficile is a Gram-positive, anaerobic spore former, and an important nosocomial pathogenic bacterium. C. difficile spores are the morphotype of transmission and recurrence of the disease. The formation of C. difficile spores and their subsequent germination are essential processes during the infection. Recent in vitro and in vivo work has shed light on how spores are formed and the timing of in vivo sporulation in a mouse model. Advances have also been made in our understanding of the machineries involved in spore germination, and how antibiotic-induced dysbiosis affects the metabolism of bile salts and thus impacts C. difficile germination in vivo. Studies have also attempted to identify how C. difficile spores interact with the host's intestinal mucosa. Spore resistance has also been revisited by several groups highlighting the extreme resistance of this morphotype to traditional food processing regimes and disinfectants used in clinical settings. Therefore, the aim of this review is to summarize recent advances on spore formation/germination in vitro and in vivo, spore-host interactions, and spore resistance that contribute to our knowledge of the role of C. difficile spores in the infectious process.


Assuntos
Clostridioides difficile/crescimento & desenvolvimento , Infecções por Clostridium/microbiologia , Esporos Bacterianos/crescimento & desenvolvimento , Animais , Modelos Animais de Doenças , Farmacorresistência Bacteriana , Interações Hospedeiro-Patógeno , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...