Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(18): 186902, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977614

RESUMO

The development of high-speed, all-optical polariton logic devices underlies emerging unconventional computing technologies and relies on advancing techniques to reversibly manipulate the spatial extent and energy of polartion condensates. We investigate active spatial control of polariton condensates independent of the polariton, gain-inducing excitation profile. This is achieved by introducing an extra intracavity semiconductor layer, nonresonant to the cavity mode. Partial saturation of the optical absorption in the uncoupled layer enables the ultrafast modulation of the effective refractive index and, through excited-state absorption, the polariton dissipation. Utilizing an intricate interplay of these mechanisms, we demonstrate control over the spatial profile, density, and energy of a polariton condensate at room temperature.

2.
Micromachines (Basel) ; 14(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37241659

RESUMO

The direct laser synthesis of periodically nanostructured 2D transition metal dichalcogenide (2D-TMD) films, from single source precursors, is presented here. Laser synthesis of MoS2 and WS2 tracks is achieved by localized thermal dissociation of Mo and W thiosalts, caused by the strong absorption of continuous wave (c.w.) visible laser radiation by the precursor film. Moreover, within a range of irradiation conditions we have observed occurrence of 1D and 2D spontaneous periodic modulation in the thickness of the laser-synthesized TMD films, which in some cases is so extreme that it results in the formation of isolated nanoribbons with a width of ~200 nm and a length of several micrometers. The formation of these nanostructures is attributed to the effect that is known as laser-induced periodic surface structures (LIPSS), which is caused by self-organized modulation of the incident laser intensity distribution due to optical feedback from surface roughness. We have fabricated two terminal photoconductive detectors based on nanostructured and continuous films and we show that the nanostructured TMD films exhibit enhanced photo-response, with photocurrent yield increased by three orders of magnitude as compared to their continuous counterparts.

3.
Sci Adv ; 8(40): eabq7533, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36197989

RESUMO

The field of spinoptronics is underpinned by good control over photonic spin-orbit coupling in devices that have strong optical nonlinearities. Such devices might hold the key to a new era of optoelectronics where momentum and polarization degrees of freedom of light are interwoven and interfaced with electronics. However, manipulating photons through electrical means is a daunting task given their charge neutrality. In this work, we present electrically tunable microcavity exciton-polariton resonances in a Rashba-Dresselhaus spin-orbit coupling field. We show that different spin-orbit coupling fields and the reduced cavity symmetry lead to tunable formation of the Berry curvature, the hallmark of quantum geometrical effects. For this, we have implemented an architecture of a photonic structure with a two-dimensional perovskite layer incorporated into a microcavity filled with nematic liquid crystal. Our work interfaces spinoptronic devices with electronics by combining electrical control over both the strong light-matter coupling conditions and artificial gauge fields.

4.
Opt Lett ; 47(14): 3556-3559, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35838729

RESUMO

Quasiperiodicity is a form of spatial order that has been observed in quasicrystalline matter but not light. We construct a quasicrystalline surface out of a light emitting diode. Using a nanoscale waveguide as a microscope (NSOM), we directly image the light field at the surface of the diode. Here we show, using reciprocal space representations of the images, that the light field is quasiperiodic. We explain the structure of the light field with wave superposition. Periodic ordering is limited to at most six-fold symmetry. The light field exhibits 12-fold quasisymmetry, showing order while disproving periodicity. This demonstrates that a new class, consisting of projections from hyperspace, exists in the taxonomy of light ordering.

5.
Phys Rev Lett ; 128(23): 237402, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35749201

RESUMO

We demonstrate spontaneous formation of a nonlinear vortex cluster state in a microcavity exciton-polariton condensate with time-periodic sign flipping of its topological charges at the GHz scale. When optically pumped with a ring-shaped nonresonant laser, the trapped condensate experiences intricate high-order mode competition and fractures into two distinct trap levels. The resulting mode interference leads to robust condensate density beatings with periodic appearance of orderly arranged phase singularities. Our work opens new perspectives on creating structured free-evolving light, and singular optics in the strong light-matter coupling regime.

6.
Phys Rev Lett ; 128(6): 065301, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35213178

RESUMO

In this Letter, we give an analytical quantum description of a nonequilibrium polariton Bose-Einstein condensate (BEC) based on the solution of the master equation for the full polariton density matrix in the limit of fast thermalization. We find the density matrix of a nonequilibrium BEC, that takes into account quantum correlations between all polariton states. We show that the formation of BEC is accompanied by the build-up of cross-correlations between the ground state and the excited states reaching their highest values at the condensation threshold. Despite the nonequilibrium nature of polariton systems, we show the average population of polariton states exhibits the Bose-Einstein distribution with an almost zero effective chemical potential above the condensation threshold similar to an equilibrium BEC. We demonstrate that above threshold the effective temperature of polaritons drops below the reservoir temperature.

8.
Phys Rev Lett ; 127(19): 190401, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34797125

RESUMO

Spin-orbit interactions which couple the spin of a particle with its momentum degrees of freedom lie at the center of spintronic applications. Of special interest in semiconductor physics are Rashba and Dresselhaus spin-orbit coupling. When equal in strength, the Rashba and Dresselhaus fields result in SU(2) spin rotation symmetry and emergence of the persistent spin helix only investigated for charge carriers in semiconductor quantum wells. Recently, a synthetic Rashba-Dresselhaus Hamiltonian was shown to describe cavity photons confined in a microcavity filled with optically anisotropic liquid crystal. In this Letter, we present a purely optical realization of two types of spin patterns corresponding to the persistent spin helix and the Stern-Gerlach experiment in such a cavity. We show how the symmetry of the Hamiltonian results in spatial oscillations of the spin orientation of photons traveling in the plane of the cavity.

9.
Sci Rep ; 11(1): 20879, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686707

RESUMO

We have developed a simplified approach to fabricate high-reflectivity mirrors suitable for applications in a strongly-coupled organic-semiconductor microcavity. Such mirrors are based on a small number of quarter-wave dielectric pairs deposited on top of a thick silver film that combine high reflectivity and broad reflectivity bandwidth. Using this approach, we construct a microcavity containing the molecular dye BODIPY-Br in which the bottom cavity mirror is composed of a silver layer coated by a SiO2 and a Nb2O5 film, and show that this cavity undergoes polariton condensation at a similar threshold to that of a control cavity whose bottom mirror consists of ten quarter-wave dielectric pairs. We observe, however, that the roughness of the hybrid mirror-caused by limited adhesion between the silver and the dielectric pair-apparently prevents complete collapse of the population to the ground polariton state above the condensation threshold.

10.
Nature ; 597(7877): 493-497, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34552252

RESUMO

The recent progress in nanotechnology1,2 and single-molecule spectroscopy3-5 paves the way for emergent cost-effective organic quantum optical technologies with potential applications in useful devices operating at ambient conditions. We harness a π-conjugated ladder-type polymer strongly coupled to a microcavity forming hybrid light-matter states, so-called exciton-polaritons, to create exciton-polariton condensates with quantum fluid properties. Obeying Bose statistics, exciton-polaritons exhibit an extreme nonlinearity when undergoing bosonic stimulation6, which we have managed to trigger at the single-photon level, thereby providing an efficient way for all-optical ultrafast control over the macroscopic condensate wavefunction. Here, we utilize stable excitons dressed with high-energy molecular vibrations, allowing for single-photon nonlinear operation at ambient conditions. This opens new horizons for practical implementations like sub-picosecond switching, amplification and all-optical logic at the fundamental quantum limit.

11.
Nat Commun ; 12(1): 2120, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33837211

RESUMO

Vorticity is a key ingredient to a broad variety of fluid phenomena, and its quantised version is considered to be the hallmark of superfluidity. Circulating flows that correspond to vortices of a large topological charge, termed giant vortices, are notoriously difficult to realise and even when externally imprinted, they are unstable, breaking into many vortices of a single charge. In spite of many theoretical proposals on the formation and stabilisation of giant vortices in ultra-cold atomic Bose-Einstein condensates and other superfluid systems, their experimental realisation remains elusive. Polariton condensates stand out from other superfluid systems due to their particularly strong interparticle interactions combined with their non-equilibrium nature, and as such provide an alternative testbed for the study of vortices. Here, we non-resonantly excite an odd number of polariton condensates at the vertices of a regular polygon and we observe the formation of a stable discrete vortex state with a large topological charge as a consequence of antibonding frustration between nearest neighbouring condensates.

12.
Light Sci Appl ; 9: 173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082942

RESUMO

The state of the art in optical biosensing is focused on reaching high sensitivity at a single wavelength by using any type of optical resonance. This common strategy, however, disregards the promising possibility of simultaneous measurements of a bioanalyte's refractive index over a broadband spectral domain. Here, we address this issue by introducing the approach of in-fibre multispectral optical sensing (IMOS). The operating principle relies on detecting changes in the transmission of a hollow-core microstructured optical fibre when a bioanalyte is streamed through it via liquid cells. IMOS offers a unique opportunity to measure the refractive index at 42 wavelengths, with a sensitivity up to ~3000 nm per refractive index unit (RIU) and a figure of merit reaching 99 RIU-1 in the visible and near-infra-red spectral ranges. We apply this technique to determine the concentration and refractive index dispersion for bovine serum albumin and show that the accuracy meets clinical needs.

13.
Nano Lett ; 20(9): 6502-6509, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32787174

RESUMO

We studied monatomic linear carbon chains stabilized by gold nanoparticles attached to their ends and deposited on a solid substrate. We observe spectral features of straight chains containing from 8 to 24 atoms. Low-temperature PL spectra reveal characteristic triplet fine structures that repeat themselves for carbon chains of different lengths. The triplet is invariably composed of a sharp intense peak accompanied by two broader satellites situated 15 and 40 meV below the main peak. We interpret these resonances as an edge-state neutral exciton and positively and negatively charged trions, respectively. The time-resolved PL shows that the radiative lifetime of the observed quasiparticles is about 1 ns, and it increases with the increase of the length of the chain. At high temperatures a nonradiative exciton decay channel appears due to the thermal hopping of carriers between parallel carbon chains. Excitons in carbon chains possess large oscillator strengths and extremely low inhomogeneous broadenings.

14.
Science ; 366(6466): 727-730, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31699934

RESUMO

Spin-orbit interactions lead to distinctive functionalities in photonic systems. They exploit the analogy between the quantum mechanical description of a complex electronic spin-orbit system and synthetic Hamiltonians derived for the propagation of electromagnetic waves in dedicated spatial structures. We realize an artificial Rashba-Dresselhaus spin-orbit interaction in a liquid crystal-filled optical cavity. Three-dimensional tomography in energy-momentum space enabled us to directly evidence the spin-split photon mode in the presence of an artificial spin-orbit coupling. The effect is observed when two orthogonal linear polarized modes of opposite parity are brought near resonance. Engineering of spin-orbit synthetic Hamiltonians in optical cavities opens the door to photonic emulators of quantum Hamiltonians with internal degrees of freedom.

15.
Light Sci Appl ; 8: 81, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31666947

RESUMO

Polaritons are quasi-particles composed of a superposition of excitons and photons that can be created within a strongly coupled optical microcavity. Here, we describe a structure in which a strongly coupled microcavity containing an organic semiconductor is coupled to a second microcavity containing a series of weakly coupled inorganic quantum wells. We show that optical hybridisation occurs between the optical modes of the two cavities, creating a delocalised polaritonic state. By electrically injecting electron-hole pairs into the inorganic quantum-well system, we are able to transfer energy between the cavities and populate organic-exciton polaritons. Our approach represents a new strategy to create highly efficient devices for emerging 'polaritonic' technologies.

16.
Nanoscale ; 11(40): 18837-18844, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31595913

RESUMO

In this paper, we propose a hybrid quantum dot (QD)/solar cell configuration to improve performance of interdigitated back contact (IBC) silicon solar cells, resulting in 39.5% relative boost in the short-circuit current (JSC) through efficient utilisation of resonant energy transfer (RET) and luminescent downshifting (LDS). A uniform layer of CdSe1-xSx/ZnS quantum dots is deposited onto the AlOx surface passivation layer of the IBC solar cell. QD hybridization is found to cause a broadband improvement in the solar cell external quantum efficiency. Enhancement over the QD absorption wavelength range is shown to result from LDS. This is confirmed by significant boosts in the solar cell internal quantum efficiency (IQE) due to the presence of QDs. Enhancement over the red and near-infrared spectral range is shown to result from the anti-reflection properties of the QD layer coating. A study on the effect of QD layer thickness on solar cell performance was performed and an optimised QD layer thickness was determined. Time-resolved photoluminescence (TRPL) spectroscopy was used to investigate the photoluminescence dynamics of the QD layer as a function of AlOx spacer layer thickness. RET can be evoked between the QD and Si layers for very thin AlOx spacer layers, with RET efficiencies of up to 15%. In the conventional LDS architecture, down-converters are deposited on the surface of an optimised anti-reflection layer, providing relatively narrowband enhancement, whereas the QDs in our hybrid architecture provide optical enhancement over the broadband wavelength range, by simultaneously utilising LDS, RET-mediated carrier injection, and antireflection effects, resulting in up to 40% improvement in the power conversion efficiency (PCE). Low-cost synthesis of QDs and simple device integration provide a cost-effective solution for boosting solar cell performance.

17.
ACS Appl Mater Interfaces ; 11(1): 1040-1048, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30540432

RESUMO

Inorganic cesium lead halide perovskite nanowires, generating laser emission in the broad spectral range at room temperature and low threshold, have become powerful tools for the cutting-edge applications in the optoelectronics and nanophotonics. However, to achieve high-quality nanowires with the outstanding optical properties, it was necessary to employ long-lasting and costly methods of their synthesis, as well as postsynthetic separation and transfer procedures that are not convenient for large-scale production. Here we report a novel approach to fabricate high-quality CsPbBr3 nanolasers obtained by rapid precipitation from dimethyl sulfoxide solution sprayed onto hydrophobic substrates at ambient conditions. The synthesis technique allows producing the well-separated nanowires with a broad size distribution of 2-50 µm in 5-7 min, being the fastest method to the best of our knowledge. The formation of nanowires occurs via ligand-assisted reprecipitation triggered by intermolecular proton transfer from (CH3)2CHOH to H2O in the presence of a minor amount of water. The XRD patterns confirm an orthorhombic crystal structure of the as-grown CsPbBr3 single nanowires. Scanning electron microscopy images reveal their regular shape and truncated pyramidal end facets, while high-resolution transmission electron microscopy ones demonstrate their single-crystal structure. The lifetime of excitonic emission of the nanowires is found to be 7 ns, when the samples are excited with energy below the lasing threshold, manifesting the low concentration of defect states. The measured nanolasers of different lengths exhibit pronounced stimulated emission above 13 µJ cm-2 excitation threshold with quality factor Q = 1017-6166. Their high performance is assumed to be related to their monocrystalline structure, low concentration of defect states, and improved end facet reflectivity.

18.
Light Sci Appl ; 7: 74, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30323926

RESUMO

The spin Hall effect, a key enabler in the field of spintronics, underlies the capability to control spin currents over macroscopic distances. The effect was initially predicted by D'Yakonov and Perel1 and has been recently brought to the foreground by its realization in paramagnetic metals by Hirsch2 and in semiconductors3 by Sih et al. Whereas the rapid dephasing of electrons poses severe limitations to the manipulation of macroscopic spin currents, the concept of replacing fermionic charges with neutral bosons such as photons in stratified media has brought some tangible advances in terms of comparatively lossless propagation and ease of detection4-7. These advances have led to several manifestations of the spin Hall effect with light, ranging from semiconductor microcavities8,9 to metasurfaces10. To date the observations have been limited to built-in effective magnetic fields that underpin the formation of spatial spin currents. Here we demonstrate external control of spin currents by modulating the splitting between transverse electric and magnetic fields in liquid crystals integrated in microcavities.

19.
Nanomaterials (Basel) ; 8(7)2018 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-29986509

RESUMO

A facile colloidal synthesis of highly ionic cesium halide nanocrystals is reported. Colloidal nanocrystals of CsI, CsCl and CsBr with unprecedentedly small dimensions are obtained using oleylammonium halides and cesium oleate as precursors. The ease and adaptability of our method enables its universalization for the formation of other highly ionic nanocrystals.

20.
Nat Mater ; 16(11): 1120-1126, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28967915

RESUMO

The vast majority of real-life optimization problems with a large number of degrees of freedom are intractable by classical computers, since their complexity grows exponentially fast with the number of variables. Many of these problems can be mapped into classical spin models, such as the Ising, the XY or the Heisenberg models, so that optimization problems are reduced to finding the global minimum of spin models. Here, we propose and investigate the potential of polariton graphs as an efficient analogue simulator for finding the global minimum of the XY model. By imprinting polariton condensate lattices of bespoke geometries we show that we can engineer various coupling strengths between the lattice sites and read out the result of the global minimization through the relative phases. Besides solving optimization problems, polariton graphs can simulate a large variety of systems undergoing the U(1) symmetry-breaking transition. We realize various magnetic phases, such as ferromagnetic, anti-ferromagnetic, and frustrated spin configurations on a linear chain, the unit cells of square and triangular lattices, a disordered graph, and demonstrate the potential for size scalability on an extended square lattice of 45 coherently coupled polariton condensates. Our results provide a route to study unconventional superfluids, spin liquids, Berezinskii-Kosterlitz-Thouless phase transition, and classical magnetism, among the many systems that are described by the XY Hamiltonian.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...