Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 114(24): 247203, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26197003

RESUMO

We demonstrate that a C(60) overlayer enhances the perpendicular magnetic anisotropy of a Co thin film, inducing an inverse spin reorientation transition from in plane to out of plane. The driving force is the (60)/Co interfacial magnetic anisotropy that we have measured quantitatively in situ as a function of the (60) coverage. Comparison with state-of-the-art ab initio calculations show that this interfacial anisotropy mainly arises from the local hybridization between (60) p(z) and Co d(z(2)) orbitals. By generalizing these arguments, we also demonstrate that the hybridization of (60) with a Fe(110) surface decreases the perpendicular magnetic anisotropy. These results open the way to tailor the interfacial magnetic anisotropy in organic-material-ferromagnet systems.

2.
J Chem Phys ; 139(20): 204703, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24289365

RESUMO

We demonstrate the capability to build zero and one-dimensional electroactive molecular nanostructures ordered over a macroscopic scale and stable under ambient conditions. To realize these arrays, we use the selective grafting of functionalized thiols (juglon and terthiophene based) on a self-organized metallic template. The nanoscale patterning of the molecular conductance is demonstrated and analyzed by scanning tunneling spectroscopy. Finally, the influence of the nanostructuring on electro-chemical properties is measured, paving the way to an all-bottom-up fabrication of nanostructured templates for nanosciences.


Assuntos
Metais/química , Nanoestruturas/química , Compostos de Sulfidrila/química , Condutividade Elétrica , Modelos Moleculares , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Propriedades de Superfície
3.
Nano Lett ; 12(9): 4558-63, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22827486

RESUMO

Using organic materials in spintronic devices raises a lot of expectation for future applications due to their flexibility, low cost, long spin lifetime, and easy functionalization. However, the interfacial hybridization and spin polarization between the organic layer and the ferromagnetic electrodes still has to be understood at the molecular scale. Coupling state-of-the-art spin-polarized scanning tunneling spectroscopy and spin-resolved ab initio calculations, we give the first experimental evidence of the spin splitting of a molecular orbital on a single non magnetic C(60) molecule in contact with a magnetic material, namely, the Cr(001) surface. This hybridized molecular state is responsible for an inversion of sign of the tunneling magnetoresistance depending on energy. This result opens the way to spin filtering through molecular orbitals.


Assuntos
Fulerenos/química , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Impedância Elétrica , Campos Magnéticos
4.
J Phys Condens Matter ; 23(4): 045007, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21406881

RESUMO

Several tens of chromium layers were deposited at 250 °C on a Cr(001) surface and investigated by spin-polarized scanning tunneling microscopy (SP-STM), Auger electron spectroscopy (AES) and scanning tunneling spectroscopy (STS). Chromium is found to grow with a mound-like morphology resulting from the stacking of several monolayers which do not uniformly cover the whole surface of the substrate. The terminal plane consists of an irregular array of Cr islands with lateral sizes smaller than 20 × 20 nm(2). Combined AES and STS measurements reveal the presence of a significant amount of segregants prior to and after deposition. A detailed investigation of the surface shows that it consists of two types of patches. Thanks to STS measurements, the two types of area have been identified as being either chromium pure or segregant rich. SP-STM experiments have evidenced that the antiferromagnetic layer coupling remains in the chromium mounds after deposition and is not significantly affected by the presence of the segregants.

5.
Phys Rev Lett ; 105(5): 056101, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20867936

RESUMO

Using scanning tunneling microscopy and a diffraction experiment, we have discovered a new ordered surface alloy made out of two bulk-immiscible components, Fe and Au, deposited on a Ru(0001) substrate. In such a system, substrate-mediated strain interactions are believed to provide the main driving force for mixing. However, spin-polarized ab initio calculations show that the most stable structures are always the ones with the highest magnetic moment per Fe atom and not the ones minimizing the surface stress, in remarkable agreement with the observations. This opens up novel possibilities for creating materials with unique properties of relevance to device applications.

6.
Phys Rev Lett ; 104(13): 137202, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20481908

RESUMO

The magnetic susceptibility of self-organized two-dimensional Co nanodots on Au(111) has been measured as a function of their size in the 2-7 nm diameter range. We show that the activation energy for the thermal reversal displays a power law behavior with the dot volume. Atomic scale simulations based on the Heisenberg Hamiltonian show that this behavior is due to a deviation from the macrospin model for dot size as small as 3 nm in diameter. This discrepancy is attributed to finite temperature effects through the thermal excitation of spin-wave modes inside the particles.

7.
Nat Mater ; 9(3): 235-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20081833

RESUMO

Single-walled carbon nanotubes provide an ideal system for studying the properties of one-dimensional (1D) materials, where strong electron-electron interactions are expected. Optical measurements have recently reported the existence of excitons in semiconducting nanotubes, revealing the importance of many-body effects. Surprisingly, pioneering electronic structure calculations and scanning tunnelling spectroscopy (STS) experiments report the same gap values as optical experiments. Here, an experimental STS study of the bandgap of single-walled semiconducting nanotubes, demonstrates a continuous transition from the gap reduced by the screening resulting from the metal substrate to the intrinsic gap dominated by many-body interactions. These results provide a deeper knowledge of many-body interactions in these 1D systems and a better understanding of their electronic properties, which is a prerequisite for any application of nanotubes in the ultimate device miniaturization for molecular electronics, or spintronics.

8.
Phys Rev Lett ; 103(6): 067202, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19792607

RESUMO

Self-organized Co nanodots on a Au(111) surface have been surrounded by controlled Au rings that progressively cap the entire dots. The magnetic susceptibility of these dots has been measured in situ as a function of the Au coverage. The blocking temperature increases when the Co bilayer dots are surrounded by the first Au atomic layer and decreases with the subsequent capping. This result cannot be explained by interfacial anisotropy which is generally assumed to be the dominant term in the magnetic anisotropy of nanostructures. Using molecular dynamics simulations, we evidence that the large strain inside the Co clusters is the main driving force for the anisotropy changes during the Au encapsulation.

9.
Phys Rev Lett ; 93(20): 206803, 2004 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-15600953

RESUMO

The Cu adatom-induced localization of the two-dimensional Shockley surface state at the Cu(111) surface was identified from experimental and simulated scanning tunneling microscopy spectra. The localization gives rise to a resonance located just below the surface state band edge. The adatom-induced surface state localization is discussed in terms of the existence theorem for bound states in any attractive two-dimensional potential. We also identify adatom-induced resonance states deriving from atomic orbitals in both experimental and simulated spectra.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...