Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2468: 293-318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320572

RESUMO

Microfluidic devices offer several advantages for C. elegans research, particularly for presenting precise physical and chemical environments, immobilizing animals during imaging, quantifying behavior, and automating screens. However, challenges to their widespread adoption in the field include increased complexity over conventional methods, operational problems (such as clogging, leaks, and bubbles), difficulty in obtaining or fabricating devices, and the need to characterize biological results obtained from new assay formats. Here we describe the preparation and operation of simple, reusable microfluidic devices for quantifying behavioral responses to chemical patterns, and single-use devices to arrange animals for time-lapse microscopy and to measure neuronal activity. We focus on details that eliminate or reduce the frustrations commonly experienced by new users of microfluidic devices.


Assuntos
Caenorhabditis elegans , Técnicas Analíticas Microfluídicas , Animais , Caenorhabditis elegans/fisiologia , Dispositivos Lab-On-A-Chip , Microscopia , Neurônios
2.
Methods Mol Biol ; 2191: 221-233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32865748

RESUMO

All-optical methods of probing in vivo brain function are advantageous for their compatibility with automated microscopy and fast spatial targeting of neural circuit excitation and response. Recent advances in optogenetic technologies allow simultaneous light activation of specific neurons and optical readout of neural activity via fluorescent calcium reporters, providing an attractive opportunity for high-throughput screening assays that directly assess dynamic neural function in vivo. Here we describe a method to automatically record optogenetically activated neural responses in living, hydrogel-embedded organisms over many hours in a multiwell plate format. This method is suitable for screening the neural effects of hundreds of chemical compounds and assessing the time course of bioactivity over 12 h or more. As examples, we show the suppression of neural responses over time with various concentrations of two voltage-gated calcium channel blockers and a full-plate screen of 320 chemicals with positive and negative controls in a single experiment.


Assuntos
Cálcio/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Neurônios/metabolismo , Optogenética/métodos , Potenciais de Ação/genética , Animais , Caenorhabditis elegans/genética , Microscopia , Neurônios/patologia , Estimulação Luminosa
3.
Biophys J ; 120(7): 1170-1186, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32853565

RESUMO

Although much is known about the biochemical regulation of glycolytic enzymes, less is understood about how they are organized inside cells. We systematically examine the dynamic subcellular localization of glycolytic protein phosphofructokinase-1/PFK-1.1 in Caenorhabditis elegans. We determine that endogenous PFK-1.1 localizes to subcellular compartments in vivo. In neurons, PFK-1.1 forms phase-separated condensates near synapses in response to energy stress from transient hypoxia. Restoring animals to normoxic conditions results in cytosolic dispersion of PFK-1.1. PFK-1.1 condensates exhibit liquid-like properties, including spheroid shapes due to surface tension, fluidity due to deformations, and fast internal molecular rearrangements. Heterologous self-association domain cryptochrome 2 promotes formation of PFK-1.1 condensates and recruitment of aldolase/ALDO-1. PFK-1.1 condensates do not correspond to stress granules and might represent novel metabolic subcompartments. Our studies indicate that glycolytic protein PFK-1.1 can dynamically form condensates in vivo.


Assuntos
Caenorhabditis elegans/enzimologia , Fosfofrutoquinase-1 , Fosfofrutoquinases , Animais , Glicólise , Organelas/metabolismo , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo , Fosforilação
4.
Sci Rep ; 8(1): 6217, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670202

RESUMO

High-throughput biological and chemical experiments typically use either multiwell plates or microfluidic devices to analyze numerous independent samples in a compact format. Multiwell plates are convenient for screening chemical libraries in static fluid environments, whereas microfluidic devices offer immense flexibility in flow control and dynamics. Interfacing these platforms in a simple and automated way would introduce new high-throughput experimental capabilities, such as compound screens with precise exposure timing. Whereas current approaches to integrate microfluidic devices with multiwell plates remain expensive or technically complicated, we present here a simple open-source robotic system that delivers liquids sequentially through a single connected inlet. We first characterized reliability and performance by automatically delivering 96 dye solutions to a microfluidic device. Next, we measured odor dose-response curves of in vivo neural activity from two sensory neuron types in dozens of living C. elegans in a single experiment. We then identified chemicals that suppressed optogenetically-evoked neural activity, demonstrating a functional screening platform for neural modulation in whole organisms. Lastly, we automated an 85-minute, ten-step cell staining protocol. Together, these examples show that our system can automate various protocols and accelerate experiments by economically bridging two common elements of high-throughput systems: multiwell plates and microfluidics.

5.
Curr Biol ; 28(6): 902-914.e5, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29526590

RESUMO

Biological sex, a fundamental dimension of internal state, can modulate neural circuits to generate behavioral variation. Understanding how and why circuits are tuned by sex can provide important insights into neural and behavioral plasticity. Here we find that sexually dimorphic behavioral responses to C. elegans ascaroside sex pheromones are implemented by the functional modulation of shared chemosensory circuitry. In particular, the sexual state of a single sensory neuron pair, ADF, determines the nature of an animal's behavioral response regardless of the sex of the rest of the body. Genetic feminization of ADF causes males to be repelled by, rather than attracted to, ascarosides, whereas masculinization of ADF has the opposite effect in hermaphrodites. When ADF is ablated, both sexes are weakly repelled by ascarosides. Genetic sex modulates ADF function by tuning chemosensation: although ADF is functional in both sexes, it detects the ascaroside ascr#3 only in males, a consequence of cell-autonomous action of the master sexual regulator tra-1. This occurs in part through the conserved DM-domain gene mab-3, which promotes the male state of ADF. The sexual modulation of ADF has a key role in reproductive fitness, as feminization or ablation of ADF renders males unable to use ascarosides to locate mates. Our results reveal an economical mechanism in which sex-specific behavioral valence arises through the cell-autonomous regulation of a chemosensory switch by genetic sex, allowing a social cue with salience for both sexes to elicit navigational responses commensurate with the differing needs of each.


Assuntos
Aptidão Genética/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Comportamento Animal/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Células Quimiorreceptoras/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Feminino , Masculino , Sistema Nervoso , Neurônios/fisiologia , Células Receptoras Sensoriais/metabolismo , Atrativos Sexuais/metabolismo , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Fatores de Transcrição/genética
6.
Methods Mol Biol ; 1327: 159-79, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26423974

RESUMO

Microfluidic devices offer several advantages for C. elegans research, particularly for presenting precise physical and chemical environments, immobilizing animals during imaging, quantifying behavior, and automating screens. However, challenges to their widespread adoption in the field include increased complexity over conventional methods, operational problems (such as clogging, leaks, and bubbles), difficulty in obtaining or fabricating devices, and the need to characterize biological results obtained from new assay formats. Here we describe the preparation and operation of simple, reusable microfluidic devices for quantifying behavioral responses to chemical patterns, and single-use devices to arrange animals for time-lapse microscopy and to measure neuronal activity. We focus on details that eliminate or reduce the frustrations commonly experienced by new users of microfluidic devices.


Assuntos
Comportamento Animal , Caenorhabditis elegans/fisiologia , Técnicas Analíticas Microfluídicas/instrumentação , Microfluídica/instrumentação , Microscopia , Imagem Molecular/métodos , Neurônios/fisiologia , Animais , Microscopia/métodos
7.
Acta Biomater ; 12: 42-50, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25449922

RESUMO

Retinal prostheses promise to be a viable therapy for many forms of blindness. Direct stimulation of neurons using an organic light-sensitive, self-assembled monolayer surface offers a simple alternative to conventional semiconductor technology. For this purpose we have derivatized an indium tin oxide (ITO) substrate with the photosensitive dye, NK5962, using 3-(aminopropyl)trimethoxysilane (APTMS) as cross-linker. The surface was characterized through contact angle goniometry, electrochemical impedance spectroscopy, grazing angle infrared and ultraviolet-visible spectrophotometry. NG108-15 neurons were grown on the ITO-APTMS-NK5962 surface and neural responses from electrical stimulation vs. photostimulation through the ITO-APTMS-NK5962 surface were measured using patch clamp electrophysiology. Under these conditions, photostimulation of depolarized cells caused an approximate 2-fold increase in voltage-gated sodium (Na(+)) current amplitude at a membrane potential of -30mV. Our results demonstrate the feasibility of stimulating neurons, grown on light-sensitive surfaces, with light impulses, which ultimately may facilitate the fabrication of a simple, passive retinal prosthetic.


Assuntos
Neurônios/fisiologia , Análise Espectral/métodos , Linhagem Celular , Humanos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...