Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 304: 105229, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880355

RESUMO

Mass-tolerant open search methods allow the high-throughput analysis of modified peptides by mass spectrometry. These techniques have paved the way to unbiased analysis of post-translational modifications in biological contexts, as well as of chemical modifications produced during the manipulation of protein samples. In this work, we have analyzed in-depth a wide variety of samples of different biological origin, including cells, extracellular vesicles, secretomes, centrosomes and tissue preparations, using Comet-ReCom, a recently improved version of the open search engine Comet-PTM. Our results demonstrate that glutamic acid residues undergo intensive methyl esterification when protein digestion is performed using in-gel techniques, but not using gel-free approaches. This effect was highly specific to Glu and was not found for other methylable residues such as Asp.

2.
J Proteomics ; 287: 104968, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37463622

RESUMO

Open-search methods allow unbiased, high-throughput identification of post-translational modifications in proteins at an unprecedented scale. The performance of current open-search algorithms is diminished by experimental errors in the determination of the precursor peptide mass. In this work we propose a semi-supervised open search approach, called ReCom, that minimizes this effect by taking advantage of a priori known information from a reference database, such as Unimod or a database provided by the user. We present a proof-of-concept study using Comet-ReCom, an improved version of Comet-PTM. Comet-ReCom increased identification performance of Comet-PTM by 68%. This increased performance of Comet-ReCom to score the MS/MS spectrum comes in parallel with a significantly better assignation of the monoisotopic peak of the precursor peptide in the MS spectrum, even in cases of peptide coelution. Our data demonstrate that open searches using ultra-tolerant mass windows can benefit from using a semi-supervised approach that takes advantage from previous knowledge on the nature of protein modifications. SIGNIFICANCE: The present study introduces a novel approach to ultra-tolerant database search, which employs prior knowledge of post-translational modifications (PTMs) to improve identification of modified peptides. This method addresses the limitations related to experimental errors and precursor mass assignation of previous open-search methods. Thus, it enables the study of the biological significance of a wider variety of PTMs, including unknown or unexpected modifications that may have gone unnoticed using non-supervised search methods.


Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Espectrometria de Massas em Tandem/métodos , Peptídeos/metabolismo , Proteínas/metabolismo , Algoritmos , Processamento de Proteína Pós-Traducional , Bases de Dados de Proteínas , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...