Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(23): eadk8471, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838137

RESUMO

Deep random forest (DRF), which combines deep learning and random forest, exhibits comparable accuracy, interpretability, low memory and computational overhead to deep neural networks (DNNs) in edge intelligence tasks. However, efficient DRF accelerator is lagging behind its DNN counterparts. The key to DRF acceleration lies in realizing the branch-split operation at decision nodes. In this work, we propose implementing DRF through associative searches realized with ferroelectric analog content addressable memory (ACAM). Utilizing only two ferroelectric field effect transistors (FeFETs), the ultra-compact ACAM cell performs energy-efficient branch-split operations by storing decision boundaries as analog polarization states in FeFETs. The DRF accelerator architecture and its model mapping to ACAM arrays are presented. The functionality, characteristics, and scalability of the FeFET ACAM DRF and its robustness against FeFET device non-idealities are validated in experiments and simulations. Evaluations show that the FeFET ACAM DRF accelerator achieves ∼106×/10× and ∼106×/2.5× improvements in energy and latency, respectively, compared to other DRF hardware implementations on state-of-the-art CPU/ReRAM.

2.
Nat Commun ; 13(1): 6284, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271072

RESUMO

Lifelong on-device learning is a key challenge for machine intelligence, and this requires learning from few, often single, samples. Memory-augmented neural networks have been proposed to achieve the goal, but the memory module must be stored in off-chip memory, heavily limiting the practical use. In this work, we experimentally validated that all different structures in the memory-augmented neural network can be implemented in a fully integrated memristive crossbar platform with an accuracy that closely matches digital hardware. The successful demonstration is supported by implementing new functions in crossbars, including the crossbar-based content-addressable memory and locality sensitive hashing exploiting the intrinsic stochasticity of memristor devices. Simulations show that such an implementation can be efficiently scaled up for one-shot learning on more complex tasks. The successful demonstration paves the way for practical on-device lifelong learning and opens possibilities for novel attention-based algorithms that were not possible in conventional hardware.


Assuntos
Algoritmos , Redes Neurais de Computação , Inteligência Artificial , Computadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...