Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Mol Inform ; : e202400032, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979651

RESUMO

The analysis of drug-induced gene expression profiles (DIGEP) is widely used to estimate the potential therapeutic and adverse drug effects as well as the molecular mechanisms of drug action. However, the corresponding experimental data is absent for many existing drugs and drug-like compounds. To solve this problem, we created the DIGEP-Pred 2.0 web application, which allows predicting DIGEP and potential drug targets by structural formula of drug-like compounds. It is based on the combined use of structure-activity relationships (SARs) and network analysis. SAR models were created using PASS (Prediction of Activity Spectra for Substances) technology for data from the Comparative Toxicogenomics Database (CTD), the Connectivity Map (CMap) for the prediction of DIGEP, and PubChem and ChEMBL for the prediction of molecular mechanisms of action (MoA). Using only the structural formula of a compound, the user can obtain information on potential gene expression changes in several cell lines and drug targets, which are potential master regulators responsible for the observed DIGEP. The mean accuracy of prediction calculated by leave-one-out cross validation was 86.5 % for 13377 genes and 94.8 % for 2932 proteins (CTD data), and it was 97.9 % for 2170 MoAs. SAR models (mean accuracy-87.5 %) were also created for CMap data given on MCF7, PC3, and HL60 cell lines with different threshold values for the logarithm of fold changes: 0.5, 0.7, 1, 1.5, and 2. Additionally, the data on pathways (KEGG, Reactome), biological processes of Gene Ontology, and diseases (DisGeNet) enriched by the predicted genes, together with the estimation of target-master regulators based on OmniPath data, is also provided. DIGEP-Pred 2.0 web application is freely available at https://www.way2drug.com/digep-pred.

2.
Comput Biol Chem ; 110: 108061, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574417

RESUMO

Being widely accepted tools in computational drug search, the (Q)SAR methods have limitations related to data incompleteness. The proteochemometrics (PCM) approach expands the applicability area by using description for both protein and ligand structures. The PCM algorithms are urgently required for the development of new antiviral agents. We suggest the PCM method using the TLMNA descriptors, combining the MNA descriptors of ligands and protein sequence N-grams. Our method was validated on the viral chymotrypsin-like proteases and their ligands. We have developed an original protocol allowing us to collect a comprehensive set of 15 protein sequences and more than 9000 ligands from the ChEMBL database. The N-grams were derived from the 3D-based alignment, accurately superposing ligand-binding regions. In testing the ligand set in SAR mode with MNA descriptors, an accuracy above 0.95 was determined that shows the perspective of the antiviral drug search in virtual chemical libraries. The effective PCM models were built with the TLMNA descriptor. The strong validation procedure with pair exclusion simulated the prediction of interactions between the new ligands and new targets, resulting in accuracy estimation up to 0.89. The PCM approach shows slightly lower accuracy caused by more uncertainty compared with SAR, but it overcomes the problem of data incompleteness.


Assuntos
Antivirais , Inibidores de Proteases , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Ligantes , Antivirais/química , Antivirais/farmacologia , Algoritmos , Proteases Virais/química , Proteases Virais/metabolismo
3.
ACS Chem Neurosci ; 15(10): 2006-2017, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38683969

RESUMO

Potently affecting human and animal brain and behavior, hallucinogenic drugs have recently emerged as potentially promising agents in psychopharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful model organism for screening neuroactive drugs, including hallucinogens. Here, we tested four novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -F, -Cl, and -OCF3 substitutions in the ortho position of the phenyl ring of the N-benzyl moiety (34H-NBF, 34H-NBCl, 24H-NBOMe(F), and 34H-NBOMe(F)), assessing their behavioral and neurochemical effects following chronic 14 day treatment in adult zebrafish. While the novel tank test behavioral data indicate anxiolytic-like effects of 24H-NBOMe(F) and 34H-NBOMe(F), neurochemical analyses reveal reduced brain norepinephrine by all four drugs, and (except 34H-NBCl) - reduced dopamine and serotonin levels. We also found reduced turnover rates for all three brain monoamines but unaltered levels of their respective metabolites. Collectively, these findings further our understanding of complex central behavioral and neurochemical effects of chronically administered novel NBPEAs and highlight the potential of zebrafish as a model for preclinical screening of small psychoactive molecules.


Assuntos
Comportamento Animal , Fenetilaminas , Peixe-Zebra , Animais , Fenetilaminas/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Masculino , Alucinógenos/farmacologia , Psicotrópicos/farmacologia , Serotonina/metabolismo , Dopamina/metabolismo
4.
ACS Omega ; 8(48): 45774-45778, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075828

RESUMO

After the biotransformation of xenobiotics in the human body, the biological activity of the metabolites may differ from the activity of parent compounds. Therefore, to assess the overall biological activity of a drug-like compound, it is important to take into account its metabolites and their biological activity. We developed MetaTox 2.0-an updated version of the MetaTox web application that was able to predict the metabolites of xenobiotics. Innovations include estimating the biological activity profile of a compound and taking into account its metabolites. The estimation is based on the PASS (prediction of activity spectra for substances) algorithm and on the latest version of the training set covering over 1900 biological activities predicted with an average accuracy exceeding 0.97. Also, MetaTox 2.0 allows the search for similar substances among more than 2000 drugs with known metabolic networks, which were extracted from the ChEMBL, MetXBIODB, and DrugBank databases. MetaTox 2.0 is freely available on the web at https://www.way2drug.com/metatox.

5.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139069

RESUMO

Auditory neuropathy spectrum disorder (ANSD) associated with mutations of the OTOF gene is one of the common types of sensorineural hearing loss of a hereditary nature. Due to its high genetic heterogeneity, ANSD is considered one of the most difficult hearing disorders to diagnose. The dataset from 270 known annotated single amino acid substitutions (SAV) related to ANSD was created. It was used to estimate the accuracy of pathogenicity prediction using the known (from dbNSFP4.4) method and a new one. The new method (ConStruct) for the creation of the protein-centric classification model is based on the use of Random Forest for the analysis of missense variants in exons of the OTOF gene. A system of predictor variables was developed based on the modern understanding of the structure and function of the otoferlin protein and reflecting the location of changes in the tertiary structure of the protein due to mutations in the OTOF gene. The conservation values of nucleotide substitutions in genomes of 100 vertebrates and 30 primates were also used as variables. The average prediction of balanced accuracy and the AUC value calculated by the 5-fold cross-validation procedure were 0.866 and 0.903, respectively. The model shows good results for interpreting data from the targeted sequencing of the OTOF gene and can be implemented as an auxiliary tool for the diagnosis of ANSD in the early stages of ontogenesis. The created model, together with the results of the pathogenicity prediction of SAVs via other known accurate methods, were used for the evaluation of a manually created set of 1302 VUS related to ANSD. Based on the analysis of predicted results, 16 SAVs were selected as the new most probable pathogenic variants.


Assuntos
Perda Auditiva Central , Perda Auditiva Neurossensorial , Proteínas de Membrana , Animais , Perda Auditiva Central/diagnóstico , Perda Auditiva Central/genética , Perda Auditiva Neurossensorial/genética , Mutação , Mutação de Sentido Incorreto , Proteínas de Membrana/genética , Humanos
6.
Viruses ; 15(11)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38005921

RESUMO

Predicting viral drug resistance is a significant medical concern. The importance of this problem stimulates the continuous development of experimental and new computational approaches. The use of computational approaches allows researchers to increase therapy effectiveness and reduce the time and expenses involved when the prescribed antiretroviral therapy is ineffective in the treatment of infection caused by the human immunodeficiency virus type 1 (HIV-1). We propose two machine learning methods and the appropriate models for predicting HIV drug resistance related to amino acid substitutions in HIV targets: (i) k-mers utilizing the random forest and the support vector machine algorithms of the scikit-learn library, and (ii) multi-n-grams using the Bayesian approach implemented in MultiPASSR software. Both multi-n-grams and k-mers were computed based on the amino acid sequences of HIV enzymes: reverse transcriptase and protease. The performance of the models was estimated by five-fold cross-validation. The resulting classification models have a relatively high reliability (minimum accuracy for the drugs is 0.82, maximum: 0.94) and were used to create a web application, HVR (HIV drug Resistance), for the prediction of HIV drug resistance to protease inhibitors and nucleoside and non-nucleoside reverse transcriptase inhibitors based on the analysis of the amino acid sequences of the appropriate HIV proteins from clinical samples.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Humanos , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Teorema de Bayes , Substituição de Aminoácidos , Reprodutibilidade dos Testes , Transcriptase Reversa do HIV/genética , Inibidores da Transcriptase Reversa/farmacologia , Infecções por HIV/tratamento farmacológico , Farmacorresistência Viral/genética , Protease de HIV/genética
7.
Life (Basel) ; 13(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37763211

RESUMO

Drug resistance to anticancer drugs is a serious complication in patients with cancer. Typically, drug resistance occurs due to amino acid substitutions (AAS) in drug target proteins. The study aimed at developing and validating a new approach to the creation of structure-property relationships (SPR) classification models to predict AASs leading to drug resistance to inhibitors of tyrosine-protein kinase ABL1. The approach was based on the representation of AASs as peptides described in terms of structural formulas. The data on drug-resistant and non-resistant variants of AAS for two isoforms of ABL1 were extracted from the COSMIC database. The given training sets (approximately 700 missense variants) were used for the creation of SPR models in MultiPASS software based on substructural atom-centric multiple neighborhoods of atom (MNA) descriptors for the description of the structural formula of protein fragments and a Bayesian-like algorithm for revealing structure-property relationships. It was found that MNA descriptors of the 6th level and peptides from 11 amino acid residues were the best combination for ABL1 isoform 1 with the prediction accuracy (AUC) of resistance to imatinib (0.897) and dasatinib (0.996). For ABL1 isoform 2 (resistance to imatinib), the best combination was MNA descriptors of the 6th level, peptides form 15 amino acids (AUC value was 0.909). The prediction of possible drug-resistant AASs was made for dbSNP and gnomAD data. The six selected most probable imatinib-resistant AASs were additionally validated by molecular modeling and docking, which confirmed the possibility of resistance for the E334V and T392I variants.

8.
Bioinformatics ; 39(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37535750

RESUMO

MOTIVATION: Next Generation Sequencing technologies make it possible to detect rare genetic variants in individual patients. Currently, more than a dozen software and web services have been created to predict the pathogenicity of variants related with changing of amino acid residues. Despite considerable efforts in this area, at the moment there is no ideal method to classify pathogenic and harmless variants, and the assessment of the pathogenicity is often contradictory. In this article, we propose to use peptides structural formulas of proteins as an amino acid residues substitutions description, rather than a single-letter code. This allowed us to investigate the effectiveness of chemoinformatics approach to assess the pathogenicity of variants associated with amino acid substitutions. RESULTS: The structure-activity relationships analysis relying on protein-specific data and atom centric substructural multilevel neighborhoods of atoms (MNA) descriptors of molecular fragments appeared to be suitable for predicting the pathogenic effect of single amino acid variants. MNA-based Naïve Bayes classifier algorithm, ClinVar and humsavar data were used for the creation of structure-activity relationships models for 10 proteins. The performance of the models was compared with 11 different predicting tools: 8 individual (SIFT 4G, Polyphen2 HDIV, MutationAssessor, PROVEAN, FATHMM, MVP, LIST-S2, MutPred) and 3 consensus (M-CAP, MetaSVM, MetaLR). The accuracy of MNA-based method varies for the proteins (AUC: 0.631-0.993; MCC: 0.191-0.891). It was similar for both the results of comparisons with the other individual predictors and third-party protein-specific predictors. For several proteins (BRCA1, BRCA2, COL1A2, and RYR1), the performance of the MNA-based method was outstanding, capable of capturing the pathogenic effect of structural changes in amino acid substitutions. AVAILABILITY AND IMPLEMENTATION: The datasets are available as supplemental data at Bioinformatics online. A python script to convert amino acid and nucleotide sequences from single-letter codes to SD files is available at https://github.com/SmirnygaTotoshka/SequenceToSDF. The authors provide trial licenses for MultiPASS software to interested readers upon request.


Assuntos
Aminoácidos , Proteínas , Humanos , Substituição de Aminoácidos , Teorema de Bayes , Proteínas/química , Aminoácidos/genética , Biologia Computacional/métodos
9.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298431

RESUMO

Depression and schizophrenia are two highly prevalent and severely debilitating neuropsychiatric disorders. Both conventional antidepressant and antipsychotic pharmacotherapies are often inefficient clinically, causing multiple side effects and serious patient compliance problems. Collectively, this calls for the development of novel drug targets for treating depressed and schizophrenic patients. Here, we discuss recent translational advances, research tools and approaches, aiming to facilitate innovative drug discovery in this field. Providing a comprehensive overview of current antidepressants and antipsychotic drugs, we also outline potential novel molecular targets for treating depression and schizophrenia. We also critically evaluate multiple translational challenges and summarize various open questions, in order to foster further integrative cross-discipline research into antidepressant and antipsychotic drug development.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Antipsicóticos/efeitos adversos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Esquizofrenia/tratamento farmacológico , Esquizofrenia/induzido quimicamente
10.
Front Mol Neurosci ; 16: 1037902, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37201156

RESUMO

Introduction: Culturing of human neural stem cells (NSCs) derived from induced pluripotent stem cells (iPSC) is a promising area of research, as these cells have the potential to treat a wide range of neurological, neurodegenerative and psychiatric diseases. However, the development of optimal protocols for the production and long-term culturing of NSCs remains a challenge. One of the most important aspects of this problem is to determine the stability of NSCs during long-term in vitro passaging. To address this problem, our study was aimed at investigating the spontaneous differentiation profile in different iPSC-derived human NSCs cultures during long-term cultivation using. Methods: Four different IPSC lines were used to generate NSC and spontaneously differentiated neural cultures using DUAL SMAD inhibition. These cells were analyzed at different passages using immunocytochemistry, qPCR, bulk transcriptomes and scRNA-seq. Results: We found that various NSC lines generate significantly different spectrums of differentiated neural cells, which can also change significantly during long-term cultivation in vitro. Discussion: Our results indicate that both internal (genetic and epigenetic) and external (conditions and duration of cultivation) factors influence the stability of NSCs. These results have important implications for the development of optimal NSCs culturing protocols and highlight the need to further investigate the factors influencing the stability of these cells in vitro.

11.
Immunology ; 169(4): 447-453, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36929656

RESUMO

The search for the relationships between CDR3 TCR sequences and epitopes or MHC types is a challenging task in modern immunology. We propose a new approach to develop the classification models of structure-activity relationships (SAR) using molecular fragment descriptors MNA (Multilevel Neighbourhoods of Atoms) to represent CDR3 TCR sequences and the naïve Bayes classifier algorithm. We have created the freely available TCR-Pred web application (http://way2drug.com/TCR-pred/) to predict the interactions between α chain CDR3 TCR sequences and 116 epitopes or 25 MHC types, as well as the interactions between ß chain CDR3 TCR sequences and 202 epitopes or 28 MHC types. The TCR-Pred web application is based on the data (more 250 000 unique CDR3 TCR sequences) from VDJdb, McPAS-TCR, and IEDB databases and the proposed approach. The average AUC values of the prediction accuracy calculated using a 20-fold cross-validation procedure varies from 0.857 to 0.884. The created web application may be useful in studies related with T-cell profiling based on CDR3 TCR sequences.


Assuntos
Software , Linfócitos T , Epitopos , Teorema de Bayes , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta
12.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36768784

RESUMO

Next Generation Sequencing (NGS) technologies are rapidly entering clinical practice. A promising area for their use lies in the field of newborn screening. The mass screening of newborns using NGS technology leads to the discovery of a large number of new missense variants that need to be assessed for association with the development of hereditary diseases. Currently, the primary analysis and identification of pathogenic variations is carried out using bioinformatic tools. Although extensive efforts have been made in the computational approach to variant interpretation, there is currently no generally accepted pathogenicity predictor. In this study, we used the sequence-structure-property relationships (SSPR) approach, based on the representation of protein fragments by molecular structural formula. The approach predicts the pathogenic effect of single amino acid substitutions in proteins related with twenty-five monogenic heritable diseases from the Uniform Screening Panel for Major Conditions recommended by the Advisory Committee on Hereditary Disorders in Newborns and Children. In order to create SSPR models of classification, we modified a piece of cheminformatics software, MultiPASS, that was originally developed for the prediction of activity spectra for drug-like substances. The created SSPR models were compared with traditional bioinformatic tools (SIFT 4G, Polyphen-2 HDIV, MutationAssessor, PROVEAN and FATHMM). The average AUC of our approach was 0.804 ± 0.040. Better quality scores were achieved for 15 from 25 proteins with a significantly higher accuracy for some proteins (IVD, HADHB, HBB). The best SSPR models of classification are freely available in the online resource SAV-Pred (Single Amino acid Variants Predictor).


Assuntos
Triagem Neonatal , Software , Recém-Nascido , Criança , Humanos , Substituição de Aminoácidos , Mutação de Sentido Incorreto , Biologia Computacional
13.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675202

RESUMO

In vitro cell-line cytotoxicity is widely used in the experimental studies of potential antineoplastic agents and evaluation of safety in drug discovery. In silico estimation of cytotoxicity against hundreds of tumor cell lines and dozens of normal cell lines considerably reduces the time and costs of drug development and the assessment of new pharmaceutical agent perspectives. In 2018, we developed the first freely available web application (CLC-Pred) for the qualitative prediction of cytotoxicity against 278 tumor and 27 normal cell lines based on structural formulas of 59,882 compounds. Here, we present a new version of this web application: CLC-Pred 2.0. It also employs the PASS (Prediction of Activity Spectra for Substance) approach based on substructural atom centric MNA descriptors and a Bayesian algorithm. CLC-Pred 2.0 provides three types of qualitative prediction: (1) cytotoxicity against 391 tumor and 47 normal human cell lines based on ChEMBL and PubChem data (128,545 structures) with a mean accuracy of prediction (AUC), calculated by the leave-one-out (LOO CV) and the 20-fold cross-validation (20F CV) procedures, of 0.925 and 0.923, respectively; (2) cytotoxicity against an NCI60 tumor cell-line panel based on the Developmental Therapeutics Program's NCI60 data (22,726 structures) with different thresholds of IG50 data (100, 10 and 1 nM) and a mean accuracy of prediction from 0.870 to 0.945 (LOO CV) and from 0.869 to 0.942 (20F CV), respectively; (3) 2170 molecular mechanisms of actions based on ChEMBL and PubChem data (656,011 structures) with a mean accuracy of prediction 0.979 (LOO CV) and 0.978 (20F CV). Therefore, CLC-Pred 2.0 is a significant extension of the capabilities of the initial web application.


Assuntos
Antineoplásicos , Software , Humanos , Teorema de Bayes , Antineoplásicos/farmacologia , Antineoplásicos/química , Prednisona , Linhagem Celular Tumoral
14.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364369

RESUMO

The synthesis of the products of the 1,3-propanesultone ring opening during its interaction with amides of pyridinecarboxylic acids has been carried out. The dependence of the yield of the reaction products on the position (ortho-, meta-, para-) of the substituent in the heteroaromatic fragment and temperature condition was revealed. In contrast to the meta- and para-substituted substrates, the reaction involving ortho-derivatives at the boiling point of methanol unexpectedly led to the formation of a salt. On the basis of spectroscopic, X-Ray, and quantum-chemical calculation data, a model of the transition-state, as well as a mechanism for this alkylation reaction of pyridine carboxamides with sultone were proposed in order to explain the higher yields obtained with the nicotinamide and its N-methyl analog compared to ortho or meta parents. Based on the analysis of ESP maps, the positions of the binding sites of reagents with a potential complexing agent in space were determined. The in silico evaluation of possible biological activity showed that the synthetized compounds revealed some promising pharmacological effects and low acute toxicity.


Assuntos
Amidas , Piridinas , Piridinas/química , Amidas/química , Betaína , Alquilação
15.
Molecules ; 27(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36144612

RESUMO

Human cytochrome P450 enzymes (CYPs) are heme-containing monooxygenases. This superfamily of drug-metabolizing enzymes is responsible for the metabolism of most drugs and other xenobiotics. The inhibition of CYPs may lead to drug-drug interactions and impair the biotransformation of drugs. CYP inducers may decrease the bioavailability and increase the clearance of drugs. Based on the freely available databases ChEMBL and PubChem, we have collected over 70,000 records containing the structures of inhibitors and inducers together with the IC50 values for the inhibitors of the five major human CYPs: 1A2, 3A4, 2D6, 2C9, and 2C19. Based on the collected data, we developed (Q)SAR models for predicting inhibitors and inducers of these CYPs using GUSAR and PASS software. The developed (Q)SAR models could be applied for assessment of the interaction of novel drug-like substances with the major human CYPs. The created (Q)SAR models demonstrated reasonable accuracy of prediction. They have been implemented in the web application P450-Analyzer that is freely available via the Internet.


Assuntos
Sistema Enzimático do Citocromo P-450 , Xenobióticos , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Heme , Humanos , Microssomos Hepáticos/metabolismo , Isoformas de Proteínas
16.
Comput Biol Med ; 147: 105754, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35753090

RESUMO

Drug-resistant epilepsy results from multiple mechanisms which are difficult to fully acquire in animal models. Technological advances, that allow transformation of big data into novel therapies, are now assisting in identification a disease targets for animal modeling. Our goal was to transform the available genomic and proteomic data related to drug-resistant epilepsy into ubiquitous disease target using system biology and network pharmacology approaches, followed by animal modeling and assess its validity. We used a dataset of 42 antiseizure drugs, 175 drug targets, and 601 epilepsy-gene associations to create interactome of 543 diseased proteins linked to drug-resistant epilepsy. DIAMOnD algorithm and DAVID web-services were used to identify 35 disease pathways whereby mitochondrial complex-I was selected for animal modeling. Albino mice were treated with specific inhibitor of mitochondrial complex-I (i.e., rotenone 2.5 mg/kg, i.p on daily basis) along with chemical and electric kindling stimulus for 35 days and 15 days, respectively. According to our results, the rotenone kindling model with inhibited complex-I activity showed significant (P < 0.001) resistance to lamotrigine (15 mg/kg), levetiracetam (40 mg/kg), carbamazepine (40 mg/kg), zonisamide (100 mg/kg), gabapentin (224 mg/kg), pregabalin (30 mg/kg), phenytoin (35 mg/kg), topiramate (300 mg/kg), valproate (200 mg/kg), and drug combinations at doses that had significantly (P < 0.001) controlled seizure severity in lamotrigine-pentylenetetrazole and corneal kindling models. In conclusion, lamotrigine kindling model is more advantageous than earlier described lamotrigine and corneal kindling models which respond to drug combinations. As a result, pre-clinical drug screening through rotenone kindling may uncover broad spectrum drugs with novel antiseizure mechanisms which is a pressing issue to deal with drug-resistant epilepsy.


Assuntos
Epilepsia , Rotenona , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Biologia Computacional , Modelos Animais de Doenças , Lamotrigina/uso terapêutico , Camundongos , Proteômica , Rotenona/uso terapêutico
17.
Comput Biol Chem ; 98: 107674, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35430543

RESUMO

Prediction of protein-ligand interaction is necessary for drug design, gene regulatory networks investigation, and chemical probes detection. The existing methods commonly demonstrate high prediction accuracy for the particular groups of protein and their ligands. We developed an approach suited for the wider applicability and tested it on three dataset types significantly differing by protein homology. The study included three typical scenarios of assessing the target-ligand interaction: 1st - predicting protein targets by ligand structures' comparisons; 2nd - predicting ligands by target sequences' comparisons; 3rd - predicting both the uncharacterized targets and ligands with the fuzzy coefficients based on ligand comparisons. The 1st scenario implemented showed a high prediction accuracy of 0.96-0.99, providing fuzzy coefficients of target-ligand interactions in the 3rd scenario. Testing by 2nd scenario displayed the accuracy of 0.97-0.99 for predicting within the particular protein families, sets non-ordered by protein homology, and accuracy higher than 0.90 for most HIV sets, each presenting the close mutant proteins differing by point substitutions. The 3rd scenario displayed that fuzzy classification can reveal reasonable accuracy 0.86-0.94 at simulated data incompleteness. Thus, our approach provides high prediction accuracy with the wide applicability domain, including data differing in heterogeneity and completeness.


Assuntos
Desenho de Fármacos , Proteínas , Sítios de Ligação , Ligantes , Ligação Proteica , Proteínas/química
18.
Chem Res Toxicol ; 35(3): 402-411, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35172101

RESUMO

Assessment of structure-activity relationships (SARs) for predicting severe drug-induced liver injury (DILI) is essential since in vivo and in vitro preclinical methods cannot detect many druglike compounds disrupting liver functions. To date, plenty of SAR models for the prediction of DILI have been developed; however, none of them considered the route of drug administration and daily dose, which may introduce significant bias into prediction results. We have created a dataset of 617 drugs with parenteral and oral administration routes and consistent information on DILI severity. We have found a clear relationship between route, dose, and DILI severity. According to SAR, nearly 40% of moderate- and non-DILI-causing drugs would cause severe DILI if they were administered at high oral doses. We have proposed the following approach to predict severe DILI. New compounds recommended to be used at low oral doses (<∼10 mg daily), or parenterally, can be considered not causing severe DILI. DILI for compounds administered at medium oral doses (∼10-100 mg daily; 22.2% of drugs under consideration) can be considered unpredictable because reasonable SAR models were not obtained due to the small size and heterogeneity of the corresponding dataset. The DILI potential of the compounds recommended to be used at high oral doses (more than ∼100 mg daily) can be estimated using SAR modeling. The balanced accuracy of the approach calculated by a 10-fold cross-validation procedure is 0.803. The developed approach can be used to estimate severe DILI for druglike compounds proposed to use at low and high oral doses or parenterally at the early stages of drug development.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Administração Oral , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Humanos , Técnicas In Vitro , Preparações Farmacêuticas/química
19.
Molecules ; 26(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34684709

RESUMO

We performed an in silico, in vitro, and in vivo assessment of a potassium 2-[2-(2-oxo-4-phenylpyrrolidin-1-yl) acetamido]ethanesulfonate (compound 1) as a potential prodrug for cognitive function improvement in ischemic brain injury. Using in silico methods, we predicted the pharmacological efficacy and possible safety in rat models. In addition, in silico data showed neuroprotective features of compound 1, which were further supported by in vitro experiments in a glutamate excitotoxicity-induced model in newborn rat cortical neuron cultures. Next, we checked whether compound 1 is capable of crossing the blood-brain barrier in intact and ischemic animals. Compound 1 improved animal behavior both in intact and ischemic rats and, even though the concentration in intact brains was low, we still observed a significant anxiety reduction and activity escalation. We used molecular docking and molecular dynamics to support our hypothesis that compound 1 could affect the AMPA receptor function. In a rat model of acute focal cerebral ischemia, we studied the effects of compound 1 on the behavior and neurological deficit. An in vivo experiment demonstrated that compound 1 significantly reduced the neurological deficit and improved neurological symptom regression, exploratory behavior, and anxiety. Thus, here, for the first time, we show that compound 1 can be considered as an agent for restoring cognitive functions.


Assuntos
AVC Isquêmico/tratamento farmacológico , Pirrolidinas/química , Pirrolidinas/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Isquemia Encefálica , Cognição/efeitos dos fármacos , Cognição/fisiologia , Modelos Animais de Doenças , Ácido Glutâmico/farmacologia , Infarto da Artéria Cerebral Média , AVC Isquêmico/fisiopatologia , Masculino , Simulação de Acoplamento Molecular , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Cultura Primária de Células , Pirrolidinas/síntese química , Ratos , Ratos Wistar , Acidente Vascular Cerebral
20.
Pharmaceutics ; 13(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924315

RESUMO

Drug-drug interactions (DDIs) can cause drug toxicities, reduced pharmacological effects, and adverse drug reactions. Studies aiming to determine the possible DDIs for an investigational drug are part of the drug discovery and development process and include an assessment of the DDIs potential mediated by inhibition or induction of the most important drug-metabolizing cytochrome P450 isoforms. Our study was dedicated to creating a computer model for prediction of the DDIs mediated by the seven most important P450 cytochromes: CYP1A2, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6, and CYP3A4. For the creation of structure-activity relationship (SAR) models that predict metabolism-mediated DDIs for pairs of molecules, we applied the Prediction of Activity Spectra for Substances (PASS) software and Pairs of Substances Multilevel Neighborhoods of Atoms (PoSMNA) descriptors calculated based on structural formulas. About 2500 records on DDIs mediated by these cytochromes were used as a training set. Prediction can be carried out both for known drugs and for new, not-yet-synthesized substances. The average accuracy of the prediction of DDIs mediated by various isoforms of cytochrome P450 estimated by leave-one-out cross-validation (LOO CV) procedures was about 0.92. The SAR models created are publicly available as a web resource and provide predictions of DDIs mediated by the most important cytochromes P450.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...