Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Biol Chem ; 262(4): 1510-8, 1987 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-3805038

RESUMO

An enzymatic system has been isolated that catalyzes dihydroxylation of phthalate to form 1,2-dihydroxy-4,5-dicarboxy-3,5-cyclohexadiene with consumption of NADH and O2. This system is comprised of two proteins: a flavo-iron-sulfur protein with NADH-dependent oxidoreductase activity and a nonheme iron protein with oxygenase activity. Phthalate oxygenase is a large (approximately 217 kDa) protein composed of apparently identical 48-kDa monomers. The active enzyme has one Rieske-type [2Fe-2S] center and one mononuclear iron/monomer. Removal of the mononuclear iron by incubation with EDTA or with o-phenanthroline inhibits oxygenation; ferrous ion completely restores activity. No other metals are effective. Phthalate oxygenase is specific for phthalate or other closely related compounds. However, only phthalate is tightly coupled to NADH oxidation and O2 consumption with a stoichiometry of 1:1:1. Phthalate oxygenase is chemically competent to oxygenate phthalate when artificially supplied with reducing equivalents and O2. Phthalate oxygenase reductase is required, however, for efficient catalytic activity. The reductase is a monomeric 34-kDa flavo-iron-sulfur protein containing FMN and a plant-ferredoxin-type [2Fe-2S] center in a 1:1 ratio. Phthalate oxygenase reductase is specific for NADH but can pass electrons to a variety of acceptors, including: phthalate oxygenase, cytochrome c, ferricyanide, and dichlorophenolindophenol. This system is similar to other bacterial oxygenase systems involved in aromatic degradation including: benzoate dioxygenase, toluene dioxygenase, benzene dioxygenase, and 4-methoxybenzoate demethoxylase. However, phthalate oxygenase can be isolated in large quantities and is more stable than most other such systems.


Assuntos
Oxirredutases/isolamento & purificação , Oxigenases/isolamento & purificação , Pseudomonas/análise , Aminoácidos/análise , Fenômenos Químicos , Físico-Química , Eletroforese em Gel de Poliacrilamida , Mononucleotídeo de Flavina/análise , Ferro/análise , Peso Molecular , NAD/metabolismo , Espectrofotometria , Especificidade por Substrato
3.
J Biol Chem ; 260(6): 3251-4, 1985 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-2982852

RESUMO

Rieske-type iron/sulfur proteins and several NADH-dependent oxygenases contain Fe/S clusters with similar spectral and magnetic properties. Purified Rieske iron/sulfur protein from Thermus thermophilus contains two apparently identical [2Fe-2S] clusters in a polypeptide having only four cysteine residues, and it has been proposed that each Fe/S cluster is coordinated to two cysteine S-atoms and to an unknown number of other non-sulfur atoms (Fee, J. A., Findling, K. L., Yoshida, T., Hille, R., Tarr, G. E., Hearshen, D. O., Dunham, W. R., Day, E. P., Kent, T. A., and Munck, E. (1984) J. Biol. Chem. 259, 124-133). We have examined the Rieske protein from Thermus and the phthalate dioxygenase from Pseudomonas cepacia with electron nuclear double resonance (ENDOR) and pulsed EPR methods and report here evidence for the direct coordination of nitrogenous ligands to the Fe/S clusters in these proteins. The electron nuclear double resonance signals arising from 14N have been interpreted in terms of a strongly coupled ligand with AN = approximately 26-28 MHz and a weakly coupled ligand with AN = approximately 9 MHz. The pulsed EPR spectrum shows a rich pattern of lines in the Fourier transformed data having peaks in the range of 0.8 to 6.7 MHz. The lower frequency resonances are tentatively associated with coupling of the unpaired spin to the remote N-atoms of coordinated imidazole rings.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons , Oxigenases , Pseudomonas/enzimologia , Thermus/análise , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Ferro-Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...