Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38240799

RESUMO

The highly conserved HEATR5 proteins are best known for their roles in membrane traffic mediated by the adaptor protein complex-1 (AP1). HEATR5 proteins rely on fast-evolving cofactors to bind to AP1. However, how HEATR5 proteins interact with these cofactors is unknown. Here, we report that the budding yeast HEATR5 protein, Laa1, functions in two biochemically distinct complexes. These complexes are defined by a pair of mutually exclusive Laa1-binding proteins, Laa2 and the previously uncharacterized Lft1/Yml037c. Despite limited sequence similarity, biochemical analysis and structure predictions indicate that Lft1 and Laa2 bind Laa1 via structurally similar mechanisms. Both Laa1 complexes function in intra-Golgi recycling. However, only the Laa2-Laa1 complex binds to AP1 and contributes to its localization. Finally, structure predictions indicate that human HEATR5 proteins bind to a pair of fast-evolving interacting partners via a mechanism similar to that observed in yeast. These results reveal mechanistic insight into how HEATR5 proteins bind their cofactors and indicate that Laa1 performs functions besides recruiting AP1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Complexo de Golgi , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Complexo 1 de Proteínas Adaptadoras/metabolismo , Proteínas de Transporte/metabolismo , Complexo de Golgi/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
bioRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37662263

RESUMO

The highly conserved HEATR5 proteins are best known for their roles in membrane traffic mediated by the adaptor protein complex-1 (AP1). HEATR5 proteins rely on fast-evolving co-factors to bind to AP1. However, how HEATR5 proteins interact with these co-factors is unknown. Here, we report that the budding yeast HEATR5 protein, Laa1, functions in two biochemically distinct complexes. These complexes are defined by a pair of mutually exclusive Laa1-binding proteins, Laa2 and the previously uncharacterized Lft1/Yml037c. Despite limited sequence similarity, biochemical analysis and structure predictions indicate that Lft1 and Laa2 bind Laa1 via structurally similar mechanisms. Both Laa1 complexes function in intra-Golgi recycling. However, only the Laa2-Laa1 complex binds to AP1 and contributes to its localization. Finally, structure predictions indicate that human HEATR5 proteins bind to a pair of fast-evolving interacting partners via a mechanism similar to that observed in yeast. These results reveal mechanistic insight into how HEATR5 proteins bind their co-factors and indicate that Laa1 performs functions besides recruiting AP1.

3.
Biol Cell ; 112(11): 349-367, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32761633

RESUMO

BACKGROUND INFORMATION: In the yeast Saccharomyces cerevisiae, acute glucose starvation induces rapid endocytosis followed by vacuolar degradation of many plasma membrane proteins. This process is essential for cell viability, but the regulatory mechanisms that control it remain poorly understood. Under normal growth conditions, a major regulatory decision for endocytic cargo occurs at the trans-Golgi network (TGN) where proteins can recycle back to the plasma membrane or can be recognized by TGN-localised clathrin adaptors that direct them towards the vacuole. However, glucose starvation reduces recycling and alters the localization and post-translational modification of TGN-localised clathrin adaptors. This raises the possibility that during glucose starvation endocytosed proteins are routed to the vacuole by a novel mechanism that bypasses the TGN or does not require TGN-localised clathrin adaptors. RESULTS: Here, we investigate the role of TGN-localised clathrin adaptors in the traffic of several amino acid permeases, including Can1, during glucose starvation. We find that Can1 transits through the TGN after endocytosis in both starved and normal conditions. Can1 and other amino acid permeases require TGN-localised clathrin adaptors for maximal delivery to the vacuole. Furthermore, these permeases are actively sorted to the vacuole, because ectopically forced de-ubiquitination at the TGN results in the recycling of the Tat1 permase in starved cells. Finally, we report that the Mup1 permease requires the clathrin adaptor Gga2 for vacuolar delivery. In contrast, the clathrin adaptor protein complex AP-1 plays a minor role, potentially in retaining permeases in the TGN, but it is otherwise dispensable for vacuolar delivery. CONCLUSIONS AND SIGNIFICANCE: This work elucidates one membrane trafficking pathway needed for yeast to respond to acute glucose starvation. It also reveals the functions of TGNlocalised clathrin adaptors in this process. Our results indicate that the same machinery is needed for vacuolar protein sorting at the GN in glucose starved cells as is needed in the presence of glucose. In addition, our findings provide further support for the model that the TGN is a transit point for many endocytosed proteins, and that Gga2 and AP-1 function in distinct pathways at the TGN.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Glucose/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Rede trans-Golgi/metabolismo , Endocitose , Transporte Proteico , Vacúolos/metabolismo
4.
J Biol Chem ; 294(4): 1410-1419, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30523155

RESUMO

Cellular membrane trafficking mediated by the clathrin adaptor protein complex-1 (AP-1) is important for the proper composition and function of organelles of the endolysosomal system. Normal AP-1 function requires proteins of the HEAT repeat-containing 5 (HEATR5) family. Although HEATR5 proteins were first identified based on their ability to interact with AP-1, the functional significance of this interaction was unknown. We used bioinformatics-based phenotypic profiling and information from genome-wide fluorescence microscopy studies in the budding yeast Saccharomyces cerevisiae to identify a protein, Laa2, that mediates the interaction between AP-1 and the yeast HEATR5 protein Laa1. Further characterization of Laa2 revealed that it binds to both Laa1 and AP-1. Laa2 contains a motif similar to the characterized γ-ear-binding sites found in other AP-1-binding proteins. This motif in Laa2 is essential for the Laa1-AP-1 interaction. Moreover, mutation of this motif disrupted AP-1 localization and function and caused effects similar to mutations that remove the γ-ear of AP-1. These results indicate that Laa2 mediates the interaction between Laa1 and AP-1 and reveal that this interaction promotes the stable association of AP-1 with membranes in yeast.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo 1 de Proteínas Adaptadoras/química , Proteínas Adaptadoras de Transdução de Sinal/química , Biologia Computacional , Proteínas de Ligação a DNA/química , Microscopia de Fluorescência , Fenótipo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química
5.
Biochem Biophys Rep ; 4: 59-75, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29124188

RESUMO

BACKGROUNDS: Spontaneous deamidation and isoaspartate (IsoAsp) formation contributes to aging and reduced longevity in cells. A protein-l-isoaspartate (d-aspartate) O-methyltransferase (PCMT) is responsible for minimizing IsoAsp moieties in most organisms. METHODS: PCMT was purified in its native form from yeast Candida utilis. The role of the native PCMT in cell survival and protein repair was investigated by manipulating intracellular PCMT levels with Oxidized Adenosine (AdOx) and Lithium Chloride (LiCl). Proteomic Identification of possible cellular targets was carried out using 2-dimensional gel electrophoresis, followed by on-Blot methylation and mass spectrometric analysis. RESULTS: The 25.4 kDa native PCMT from C. utilis was found to have a Km of 3.5 µM for AdoMet and 33.36 µM for IsoAsp containing Delta Sleep Inducing Peptide (DSIP) at pH 7.0. Native PCMT comprises of 232 amino acids which is coded by a 698 bp long nucleotide sequence. Phylogenetic comparison revealed the PCMT to be related more closely with the prokaryotic homologs. Increase in PCMT levels in vivo correlated with increased cell survival under physiological stresses. PCMT expression was seen to be linked with increased intracellular reactive oxygen species (ROS) concentration. Proteomic identification of possible cellular substrates revealed that PCMT interacts with proteins mainly involved with cellular housekeeping. PCMT effected both functional and structural repair in aged proteins in vitro. GENERAL SIGNIFICANCE: Identification of PCMT in unicellular eukaryotes like C. utilis promises to make investigations into its control machinery easier owing to the familiarity and flexibility of the system.

6.
Biochim Biophys Acta ; 1840(6): 1861-71, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24412193

RESUMO

BACKGROUND: In Saccharomyces cerevisiae methylation at cysteine residue displayed enhanced activity of trehalose-6-phosphate synthase (TPS). METHODS: The cysteine methyltransferase (CMT) responsible for methylating TPS was purified and characterized. The amino acid sequence of the enzyme protein was determined by a combination of N-terminal sequencing and MALDI-TOF/TOF analysis. The nucleotide sequence of the CMT gene was determined, isolated from S. cerevisiae and expressed in E. coli. Targeted disruption of the CMT gene by PCR based homologous recombination in S. cerevisiae was followed by metabolite characterization in the mutant. RESULTS: The purified enzyme was observed to enhance the activity of TPS by a factor of 1.76. The 14kDa enzyme was found to be cysteine specific. The optimum temperature and pH of enzyme activity was calculated as 30°C and 7.0 respectively. The Km Vmax and Kcat against S-adenosyl-l-methionine (AdoMet) were 4.95µM, 3.2U/mg and 6.4s(-1) respectively. Competitive inhibitor S-Adenosyl-l-homocysteine achieved a Ki as 10.9µM against AdoMet. The protein sequence contained three putative AdoMet binding motifs. The purified recombinant CMT activity exhibited similar physicochemical characteristics with the native counterpart. The mutant, Mataα, cmt:: kan(r) exhibited almost 50% reduction in intracellular trehalose concentration. CONCLUSION: A novel cysteine methyltransferase is purified, which is responsible for enhanced levels of trehalose in S. cerevisiae. GENERAL SIGNIFICANCE: This is the first report about a cysteine methyltransferase which performs S methylation at cysteine residue regulating TPS activity by 50%, which resulted in an increase of the intercellular stress sugar, trehalose.


Assuntos
Cisteína/metabolismo , Glucosiltransferases/metabolismo , Metiltransferases/isolamento & purificação , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Clonagem Molecular , Escherichia coli/genética , Metilação , Metiltransferases/química , Metiltransferases/genética , Dados de Sequência Molecular , Especificidade por Substrato , Trealose/metabolismo
7.
J Cell Physiol ; 229(9): 1245-55, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24446217

RESUMO

Trehalose-6-phosphate phosphatase (TPP) catalyzes the final step in the biosynthesis of the anti-stress sugar trehalose. An 82 kDa TPP enzyme was isolated from Candida utilis with 61% yield and 43-fold purification. The protein sequence, determined by N-terminal sequencing and MALDI-TOF analysis, showed significant homology with known TPP sequences from related organisms. The full length gene sequence of TPP of C. utilis was identified using rapid amplification of cDNA ends-PCR reaction (RACE-PCR). The gene was cloned and expressed in Escherichia coli BL21. Recombinant TPP enzyme was isolated using affinity chromatography. CD spectroscopy and steady-state fluorescence revealed that the structural and conformational aspects were identical in both native and recombinant forms. The biochemical properties of the two forms were also similar. Km was determined to be ~0.8 mM. Optimum temperature and pH were found to be 30 °C and 8.5, respectively. Activity was dependent on the presence of divalent cations and inhibited by metal chelators. Methylation-mediated regulation of TPP enzyme and its effect on the overall survival of the organism under stress were investigated. The results indicated that enhancement of TPP activity by methylation at the Cysteine residues increased resistance of Candida cells against thermal stress. This work involves extensive investigations toward understanding the physico-chemical properties of the first TPP enzyme from any yeast strain. The mechanism by which methylation regulates its activity has also been studied. A correlation between regulation of trehalose synthesis and survivability of the organism under thermal stress was established.


Assuntos
Candida/enzimologia , Proteínas Fúngicas/metabolismo , Resposta ao Choque Térmico , Monoéster Fosfórico Hidrolases/metabolismo , Trealose/biossíntese , Sequência de Aminoácidos , Candida/genética , Quelantes/farmacologia , Cromatografia de Afinidade , Dicroísmo Circular , Clonagem Molecular , Inibidores Enzimáticos/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Metilação , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/isolamento & purificação , Conformação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura
8.
Carbohydr Res ; 361: 175-81, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23026712

RESUMO

Trehalose metabolism plays a central role in various stress responses in yeasts. Methylation dependant enhancement of trehalose synthesis has been reported from yeast Saccharomyces cerevisiae. In order to establish the role of methylation on trehalose metabolism in yeast, it was further investigated in Candida utilis. Universal methyl group donor, S-adenosyl-l-methionine (AdoMet) and its inhibitor, oxidized adenosine (Adox) were used to study the effect of methylation on trehalose metabolism in C. utilis. Treatment of early stationary phase cells of C. utilis with AdoMet and Adox exhibited increase in both intracellular metabolite levels and activities of the trehalose synthesizing enzymes, trehalose-6-phosphate synthase (TPS) and trehalose phosphate phosphatase (TPP). Among the intracellular metabolites studied, trehalose levels were enhanced in presence of AdoMet which correlated with the increasing levels of trehalose synthesizing enzymes. TPS was purified in presence of AdoMet and Adox, following an established protocol reported from this laboratory. Differences in the mobility of control TPS, methylated TPS, and methylation-inhibited TPS during acidic native gel electrophoresis confirmed the occurrence of induced methylation. MALDI-TOF analysis of trypsin-digested samples of the same further strengthened the presence of methylation in TPS. The data presented in this paper strongly indicate a positive role of methylation on trehalose synthesis which finally leads to enhanced trehalose production during the stationary growth phase of C. utilis.


Assuntos
Candida/metabolismo , Trealose/biossíntese , Candida/citologia , Glucosiltransferases/isolamento & purificação , Glucosiltransferases/metabolismo , Metilação , Fatores de Tempo , Trealose/química , Trealose/metabolismo
9.
Appl Biochem Biotechnol ; 168(8): 2358-75, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23070717

RESUMO

The present study explored both spontaneous and stress-induced deamidation in acid trehalase and endo-xylanase. An alteration in optimum pH by 1.5 units and optimum temperature by 20 °C accelerated the process of deamidation with a rise in isoaspartate formation and ammonia loss. Spontaneous deamidation during an enzyme-substrate reaction at physiological conditions resulted in accretion of isoaspartyl residues within the enzymes which gradually impaired their catalytic efficacy. Deamidation appeared to be more pronounced in endo-xylanase owing to its secondary structure conformation and high asparagine content. The active sites, Ala 549 in acid trehalase and His184 and Trp188 in endo-xylanase contributed to the loss of enzyme activity as they were flanking the deamidation-susceptible Asn residues. Protein L-isoaspartyl methyl transferase seemed to have a repairing capability, which enabled the heat-damaged enzymes to regain their partial activity as evident from there rise in K (cat)/K (m). Endo-xylanase could regain 38.1 % of its biological activity while a lesser 17.5 % reactivation was obtained in acid trehalase. A unique protein L-isoaspartyl methyl transferase recognition site, Asn 151 was also identified in acid trehalase. A mass increment of the tryptic peptides of repaired enzyme due to methylation catalyzed by protein L-isoaspartyl methyl transferase substantiated the repair hypothesis.


Assuntos
Amidas/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Trealase/metabolismo , Sequência de Aminoácidos , Basidiomycota/enzimologia , Domínio Catalítico , Endo-1,4-beta-Xilanases/química , Concentração de Íons de Hidrogênio , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/química , Saccharomyces cerevisiae/enzimologia , Temperatura , Trealase/química
10.
Arch Biochem Biophys ; 522(2): 90-9, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22484163

RESUMO

Trehalose and sucrose, two important anti-stress non-reducing natural disaccharides, are catabolized by two enzymes, namely trehalase and invertase respectively. In this study, a 175 kDa enzyme protein active against both substrates was purified from wild type Candida utilis and characterized in detail. Substrate specificity assay and activity staining revealed the enzyme to be specific for both sucrose and trehalose. The ratio between trehalase and invertase activity was found to be constant at 1:3.5 throughout the entire study. Almost 40-fold purification and 30% yield for both activities were achieved at the final step of purification. The presence of common enzyme inhibitors, thermal and pH stress had analogous effects on its trehalase and invertase activity. Km values for two activities were similar while Vmax and Kcat also differed by a factor of 3.5. Competition plot for both substrates revealed the two activities to be occurring at the single active site. N-terminal sequencing and MALDI-TOF data analysis revealed higher similarity of the purified protein to previously known neutral trehalases. While earlier workers mentioned independent purification of neutral trehalase or invertase from different sources, the present study reports the purification of a single protein showing dual activity.


Assuntos
Candida/enzimologia , Trealase/isolamento & purificação , beta-Frutofuranosidase/isolamento & purificação , Sequência de Aminoácidos , Domínio Catalítico , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Cinética , Reação em Cadeia da Polimerase , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , Trealase/antagonistas & inibidores , Trealase/química , Trealase/metabolismo , beta-Frutofuranosidase/antagonistas & inibidores , beta-Frutofuranosidase/química , beta-Frutofuranosidase/metabolismo
11.
Biochim Biophys Acta ; 1810(12): 1346-54, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21771638

RESUMO

BACKGROUND: Trehalose is the most important multifunctional, non-reducing disaccharide found in nature. It is synthesized in yeast by an enzyme complex: trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). METHODS: In the present study TPS is purified using a new methodology from Candida utilis cells by inclusion of 100mM l-arginine during cell lysis and in the mobile phase of high performance gel filtration liquid chromatography (HPGFLC). RESULTS: An electrophoretically homogenous TPS that was purified was a 60 kDa protein with 22.1 fold purification having a specific activity of 2.03 U/mg. Alignment of the N-terminal sequence with TPS from Saccharomyces cerevisiae confirmed the 60 kDa protein to be TPS. Optimum activity of TPS was observed at a protein concentration of 1 µg, at a temperature of 37°C and pH 8.5. Aggregation mediated enzyme regulation was indicated. Metal cofactors, especially MnCl2, MgCl2 and ZnSO4, acted as stimulators. Metal chelators like CDTA and EGTA stimulated enzyme activity. Among the four glucosyl donors, the highest V(max) and lowest K(m) values were calculated as 2.96 U/mg and 1.36 mM when adenosine di phosphate synthase (ADPG) was used as substrate. Among the glucosyl acceptors, glucose-6-phosphate (G-6-P) showed maximum activity followed by fructose-6-phosphate (F-6-P). Polyanions heparin and chondroitin sulfate were seen to stimulate TPS activity with different glucosyl donors. GENERAL SIGNIFICANCE: Substrate specificity, V(max) and K(m) values provided an insight into an altered trehalose metabolic pathway in the C. utilis strain where ADPG is the preferred substrate rather than the usual substrate uridine diphosphaphate glucose (UDPG). The present work employs a new purification strategy as well as highlights an altered pathway in C. utilis.


Assuntos
Arginina/química , Candida/enzimologia , Glucosiltransferases/isolamento & purificação , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão/métodos , Eletroforese em Gel de Poliacrilamida , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Peso Molecular , Especificidade por Substrato
12.
J Cell Physiol ; 226(1): 158-64, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20648561

RESUMO

The current study was undertaken to correlate post-translational protein modification by methylation with the functionality of enzymes involved in trehalose metabolism in Saccharomyces cerevisiae. Trehalose is an economically important disaccharide providing protection against various kinds of stresses. It also acts as a source of cellular energy by storing glucose. Methyl group donor S-adenosyl L-methionine (AdoMet) and methylation inhibitor-oxidized adenosine (AdOx) were used for the methylation study. AdoMet delayed initial growth of the cells but the overall growth rate remained same suggesting its interference in G1 phase of the cell cycle. Metabolic-altered enzyme activities of acid trehalase (AT), neutral trehalase (NT), and trehalose-6-phosphate synthase (TPS) were observed when treated with AdOx and AdoMet separately. A positive effect of methylation was observed in TPS, hence, it was purified in three different conditions, using AdoMet, AdOx, and control. Differences in mobility of methylated, methylation-inhibited, and control TPS during acidic native gel electrophoresis confirmed the occurrence of induced methylation. Hydrolysis under alkaline pH conditions revealed that methylation of TPS was different than O-methylation. MALDI-TOF analysis of trypsin-digested samples of purified methylated, methylation-inhibited, and control TPS revealed that an increase of 18 Da mass in methylated peptides suggesting the introduction of methyl ester in TPS. Results of amino acid analysis corroborated the presence of methyl cysteine. The data presented here strongly suggests that trehalose production was enhanced due to methylation of TPS arising from carboxymethylation of cysteine residues.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trealose/metabolismo , Adenosina/farmacologia , Proliferação de Células/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/fisiologia , Concentração de Íons de Hidrogênio , Metilação , Processamento de Proteína Pós-Traducional , S-Adenosilmetionina/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo
13.
Biochim Biophys Acta ; 1790(5): 368-74, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19289151

RESUMO

Purified trehalose-6-phosphate synthase (TPS) of Saccharomyces cerevisiae was effective over a wide range of substrates, although differing with regard to their relative activity. Polyanions heparin and chondroitin sulfate were seen to stimulate TPS activity, particularly when a pyrimidine glucose nucleotide like UDPG was used, rather than a purine glucose nucleotide like GDPG. A high V(max) and a low K(m) value of UDPG show its greater affinity with TPS than GDPG or TDPG. Among the glucosyl acceptors TPS showed maximum activity with G-6-P which was followed by M-6-P and F-6-P. Effect of heparin was also extended to the purification of TPS activity, as it helped to retain both stability and activity of the final purified enzyme. Metal co-factors, specifically MnCl(2) and ZnCl(2) acted as stimulators, while enzyme inhibitors had very little effect on TPS activity. Metal chelators like CDTA, EGTA stimulated enzyme activity by chelation of metal inhibitors. Temperature and pH optima of the purified enzyme were determined to be 40 degrees C and pH 8.5 respectively. Enzyme activity was stable at 0-40 degrees C and at alkaline pH.


Assuntos
Glucosiltransferases/metabolismo , Saccharomyces cerevisiae/enzimologia , Quelantes/farmacologia , Inibidores Enzimáticos/farmacologia , Frutosefosfatos/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Glucosiltransferases/isolamento & purificação , Heparina/farmacologia , Isomerases/metabolismo , Manosefosfatos/metabolismo , Metais/farmacologia , Polieletrólitos , Polímeros/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...