Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38410838

RESUMO

Translation of messenger RNA (mRNA) in bacteria occurs in the steps of initiation, elongation, termination, and ribosome recycling. The initiation step comprises multiple stages and uses a special transfer RNA (tRNA) called initiator tRNA (i-tRNA), which is first aminoacylated and then formylated using methionine and N10 -formyl-tetrahydrofolate (N10 -fTHF), respectively. Both methionine and N10 -fTHF are produced via one-carbon metabolism, linking translation initiation with active cellular metabolism. The fidelity of i-tRNA binding to the ribosomal peptidyl-site (P-site) is attributed to the structural features in its acceptor stem, and the highly conserved three consecutive G-C base pairs (3GC pairs) in the anticodon stem. The acceptor stem region is important in formylation of the amino acid attached to i-tRNA and in its initial binding to the P-site. And, the 3GC pairs are crucial in transiting the i-tRNA through various stages of initiation. We utilized the feature of 3GC pairs to investigate the nuanced layers of scrutiny that ensure fidelity of translation initiation through i-tRNA abundance and its interactions with the components of the translation apparatus. We discuss the importance of i-tRNA in the final stages of ribosome maturation, as also the roles of the Shine-Dalgarno sequence, ribosome heterogeneity, initiation factors, ribosome recycling factor, and coevolution of the translation apparatus in orchestrating a delicate balance between the fidelity of initiation and/or its leakiness to generate proteome plasticity in cells to confer growth fitness advantages in response to the dynamic nutritional states.

2.
RNA Biol ; 20(1): 681-692, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37676049

RESUMO

Lamotrigine (Ltg), an anticonvulsant drug, targets initiation factor 2 (IF2), compromises ribosome biogenesis and causes toxicity to Escherichia coli. However, our understanding of Ltg toxicity in E. coli remains unclear. While our in vitro assays reveal no effects of Ltg on the ribosome-dependent GTPase activity of IF2 or its role in initiation as measured by dipeptide formation in a fast kinetics assay, the in vivo experiments show that Ltg causes accumulation of the 17S precursor of 16S rRNA and leads to a decrease in polysome levels in E. coli. IF2 overexpression in E. coli increases Ltg toxicity. However, the overexpression of initiator tRNA (i-tRNA) protects it from the Ltg toxicity. The depletion of i-tRNA or overexpression of its 3GC mutant (lacking the characteristic 3GC base pairs in anticodon stem) enhances Ltg toxicity, and this enhancement in toxicity is synthetic with IF2 overexpression. The Ltg treatment itself causes a detectable increase in IF2 levels in E. coli and allows initiation with an elongator tRNA, suggesting compromise in the fidelity/specificity of IF2 function. Also, Ltg causes increased accumulation of ribosome-binding factor A (RbfA) on 30S ribosomal subunit. Based on our genetic and biochemical investigations, we show that Ltg compromises the function of i-tRNA/IF2 complex in ribosome maturation.


Assuntos
Anticonvulsivantes , Proteínas de Escherichia coli , Lamotrigina/farmacologia , Escherichia coli/genética , Fator de Iniciação 2 em Procariotos , RNA de Transferência de Metionina/genética , RNA Ribossômico 16S/genética , Ribossomos , Proteínas Ribossômicas , Proteínas de Escherichia coli/genética
3.
J Mol Biol ; 434(12): 167588, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35439479

RESUMO

The fidelity of initiator tRNA (i-tRNA) selection in the ribosomal P-site is a key step in translation initiation. The highly conserved three consecutive G:C base pairs (3GC pairs) in the i-tRNA anticodon stem play a crucial role in its selective binding in the P-site. Mutations in the 3GC pairs (3GC mutant) render the i-tRNA inactive in initiation. Here, we show that a mutation (E265K) in the unique C-terminal tail domain of RluD, a large ribosomal subunit pseudouridine synthase, results in compromised fidelity of initiation and allows initiation with the 3GC mutant i-tRNA. RluD modifies the uridine residues in H69 to pseudouridines. However, the role of its C-terminal tail domain remained unknown. The E265K mutation does not diminish the pseudouridine synthase activity of RluD, or the growth phenotype of Escherichia coli, or cause any detectable defects in the ribosomal assembly in our assays. However, in our in vivo analyses, we observed that the E265K mutation resulted in increased retention of the ribosome binding factor A (RbfA) on 30S suggesting a new role of RluD in contributing to RbfA release, a function which may be attributed to its (RluD) C-terminal tail domain. The studies also reveal that deficiency of RbfA release from 30S compromises the fidelity of i-tRNA selection in the ribosomal P-site.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Iniciação Traducional da Cadeia Peptídica , Proteínas Ribossômicas , Anticódon/genética , Anticódon/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidroliases/química , Mutação , Pseudouridina/biossíntese , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
4.
J Mol Biol ; 432(19): 5473-5488, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32795532

RESUMO

One-carbon metabolism produces methionine and N10-formyl-tetrahydrofolate (N10-fTHF) required for aminoacylation and formylation of initiator tRNA (i-tRNA), respectively. In Escherichia coli, N10-fTHF is made from 5, 10-methylene-THF by a two-step reaction using 5,10-methylene-THF dehydrogenase/cyclohydrolase (FolD). The i-tRNAs from all domains of life possess a highly conserved sequence of three consecutive G-C base pairs (3GC pairs) in their anticodon stem. A 3GC mutant i-tRNA (wherein the 3GC pairs are mutated to those found in elongator tRNAMet) is incompetent in initiation in E. coli (even though it is efficiently aminoacylated and formylated). Here, we show that E. coli strains having mutations in FolD (G122D or C58Y or P140L) allow a plasmid encoded 3GC mutant i-tRNA to participate in initiation. In vitro, the FolD mutants are highly compromised in their dehydrogenase/cyclohydrolase activities leading to reduced production of N10-fTHF and decreased rates of i-tRNA formylation. The perturbation of one-carbon metabolism by trimethoprim (inhibitor of dihydrofolate reductase) phenocopies FolD deficiency and allows initiation with the 3GC mutant i-tRNA. This study reveals an important crosstalk between one-carbon metabolism and the fidelity of translation initiation via formylation of i-tRNA, and suggests that augmentation of the age old sulfa drugs with FolD inhibitors could be an important antibacterial strategy.


Assuntos
Escherichia coli/metabolismo , Formiltetra-Hidrofolatos/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA de Transferência de Metionina/metabolismo , Anticódon/metabolismo , Proteínas de Escherichia coli/metabolismo , Análise do Fluxo Metabólico , Meteniltetra-Hidrofolato Cicloidrolase/metabolismo , Modelos Moleculares
5.
J Bacteriol ; 202(12)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32253341

RESUMO

5,10-Methylenetetrahydrofolate reductase (MetF/MTHFR) is an essential enzyme in one-carbon metabolism for de novo biosynthesis of methionine. Our in vivo and in vitro analyses of MSMEG_6664/MSMEI_6484, annotated as putative MTHFR in Mycobacterium smegmatis, failed to reveal their function as MTHFRs. However, we identified two hypothetical proteins, MSMEG_6596 and MSMEG_6649, as noncanonical MTHFRs in the bacterium. MTHFRs are known to be oligomeric flavoproteins. Both MSMEG_6596 and MSMEG_6649 are monomeric proteins and lack flavin coenzymes. In vitro, the catalytic efficiency (kcat/Km ) of MSMEG_6596 (MTHFR1) for 5,10-CH2-THF and NADH was ∼13.5- and 15.3-fold higher than that of MSMEG_6649 (MTHFR2). Thus, MSMEG_6596 is the major MTHFR. This interpretation was further supported by better rescue of the E. coli Δmthfr strain by MTHFR1 than by MTHFR2. As identified by liquid chromatography-tandem mass spectrometry, the product of MTHFR1- or MTHFR2-catalyzed reactions was 5-CH3-THF. The M. smegmatis Δmsmeg_6596 strain was partially auxotrophic for methionine and grew only poorly without methionine or without being complemented with a functional copy of MTHFR1 or MTHFR2. Furthermore, the Δmsmeg_6596 strain was more sensitive to folate pathway inhibitors (sulfachloropyridazine, p-aminosalicylic acid, sulfamethoxazole, and trimethoprim). The studies reveal that MTHFR1 and MTHFR2 are two noncanonical MTHFR proteins that are monomeric and lack flavin coenzyme. Both MTHFR1 and MTHFR2 are involved in de novo methionine biosynthesis and required for antifolate resistance in mycobacteria.IMPORTANCE MTHFR/MetF is an essential enzyme in a one-carbon metabolic pathway for de novo biosynthesis of methionine. MTHFRs are known to be oligomeric flavoproteins. Our in vivo and in vitro analyses of Mycobacterium smegmatis MSMEG_6664/MSMEI_6484, annotated as putative MTHFR, failed to reveal their function as MTHFRs. However, we identified two of the hypothetical proteins, MSMEG_6596 and MSMEG_6649, as MTHFR1 and MTHFR2, respectively. Interestingly, both MTHFRs are monomeric and lack flavin coenzymes. M. smegmatis deleted for the major mthfr (mthfr1) was partially auxotroph for methionine and more sensitive to folate pathway inhibitors (sulfachloropyridazine, para-aminosalicylic acid, sulfamethoxazole, and trimethoprim). The studies reveal that MTHFR1 and MTHFR2 are novel MTHFRs involved in de novo methionine biosynthesis and required for antifolate resistance in mycobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Coenzimas/metabolismo , Flavinas/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Mycobacterium smegmatis/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cinética , Metilenotetra-Hidrofolato Redutase (NADPH2)/química , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Mycobacterium smegmatis/química , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , NAD/metabolismo , Homologia de Sequência de Aminoácidos
6.
Nucleic Acids Res ; 47(4): 1908-1919, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30608556

RESUMO

Initiator tRNAs (i-tRNAs) possess highly conserved three consecutive GC base pairs (GC/GC/GC, 3GC pairs) in their anticodon stems. Additionally, in bacteria and eukaryotic organelles, the amino acid attached to i-tRNA is formylated by Fmt to facilitate its targeting to 30S ribosomes. Mutations in GC/GC/GC to UA/CG/AU in i-tRNACUA/3GC do not affect its formylation. However, the i-tRNACUA/3GC is non-functional in initiation. Here, we characterised an Escherichia coli strain possessing an amber mutation in its fmt gene (fmtam274), which affords initiation with i-tRNACUA/3GC. Replacement of fmt with fmtam274 in the parent strain results in production of truncated Fmt, accumulation of unformylated i-tRNA, and a slow growth phenotype. Introduction of i-tRNACUA/3GC into the fmtam274 strain restores accumulation of formylated i-tRNAs and rescues the growth defect of the strain. We show that i-tRNACUA/3GC causes a low level suppression of am274 in fmtam274. Low levels of cellular Fmt lead to compromised efficiency of formylation of i-tRNAs, which in turn results in distribution of the charged i-tRNAs between IF2 and EF-Tu allowing the plasmid borne i-tRNACUA/3GC to function at both the initiation and elongation steps. We show that a speedy formylation of i-tRNA population is crucial for its preferential binding (and preventing other tRNAs) into the P-site.


Assuntos
Anticódon/genética , Conformação de Ácido Nucleico , RNA de Transferência de Metionina/química , Ribossomos/química , Anticódon/química , Escherichia coli/química , Escherichia coli/genética , Plasmídeos/genética , RNA de Transferência de Metionina/genética , Subunidades Ribossômicas Menores de Bactérias/química , Subunidades Ribossômicas Menores de Bactérias/genética , Ribossomos/genética
7.
FEMS Microbiol Lett ; 365(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29846570

RESUMO

During protein synthesis, elongation factor G (EFG) participates at the steps of translocation and ribosome recycling. Fusidic acid (FA) is a bacteriostatic antibiotic, which traps EFG on ribosomes, stalling them on mRNAs. How the bacterial susceptibility to FA is determined, and which of the two functions of EFG (translocation or ribosome recycling) is more vulnerable, has remained debatable. The in vivo studies addressing these aspects of FA mediated inhibition of protein synthesis are lacking. Here, we used a system of Escherichia coli strains and their complementation/supplementation with the plasmid borne copies of the inducible versions of EFG and ribosome recycling factor (RRF) genes. Additionally, we investigated FA sensitivity in a strain with increased proportion of stalled ribosomes. We show that the cells with high EFG/RRF (or low RRF/EFG) ratios are more susceptible to FA than those with low EFG/RRF (or high RRF/EFG) ratios. Our in vivo observations are consistent with the recent in vitro reports of dependence of FA susceptibility on EFG/RRF ratios, and the notion that an overriding target of FA is the translocation function of EFG. An applied outcome of our in vivo study is that FA mediated growth inhibition could be facilitated by depletion or inactivation of cellular RRF.


Assuntos
Antibacterianos/farmacologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ácido Fusídico/farmacologia , Fator G para Elongação de Peptídeos/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fator G para Elongação de Peptídeos/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Ribossomos/metabolismo
8.
RNA Biol ; 15(1): 70-80, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-28901843

RESUMO

Initiator tRNAs (i-tRNAs) are characterized by the presence of three consecutive GC base pairs (GC/GC/GC) in their anticodon stems in all domains of life. However, many mycoplasmas possess unconventional i-tRNAs wherein the highly conserved sequence of GC/GC/GC is represented by AU/GC/GC, GC/GC/GU or AU/GC/GU. These mycoplasmas also tend to preferentially utilize non-AUG initiation codons. To investigate if initiation with the unconventional i-tRNAs and non-AUG codons in mycoplasmas correlated with the changes in the other components of the translation machinery, we carried out multiple sequence alignments of genes encoding initiation factors (IF), 16S rRNAs, and the ribosomal proteins such as uS9, uS12 and uS13. In addition, the occurrence of Shine-Dalgarno sequences in mRNAs was analyzed. We observed that in the mycoplasmas harboring AU/GC/GU i-tRNAs, a highly conserved position of R131 in IF3, is represented by P, F or Y and, the conserved C-terminal tail (SKR) of uS9 is represented by the TKR sequence. Using the Escherichia coli model, we show that the change of R131 in IF3 optimizes initiation with the AU/GC/GU i-tRNAs. Also, the SKR to TKR change in uS9 was compatible with the R131P variation in IF3 for initiation with the AU/GC/GU i-tRNA variant. Interestingly, the mycoplasmas harboring AU/GC/GU i-tRNAs are also human pathogens. We propose that these mycoplasmas might have evolved a relaxed translational apparatus to adapt to the environment they encounter in the host.


Assuntos
Evolução Molecular , Mycoplasma/genética , Biossíntese de Proteínas , RNA de Transferência/genética , Anticódon/genética , Códon de Iniciação/genética , Escherichia coli/genética , Humanos , Mycoplasma/patogenicidade , Conformação de Ácido Nucleico , RNA Ribossômico 16S/genética , RNA de Transferência de Metionina/genética , Proteínas Ribossômicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...