Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Front Microbiol ; 12: 747670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659183

RESUMO

Bioelectrochemical systems (BES) are attractive and versatile options for the bioremediation of organic or inorganic pollutants, including trichloroethylene (TCE) and Cr(VI), often found as co-contaminants in the environment. The elucidation of the microbial players' role in the bioelectroremediation processes for treating multicontaminated groundwater is still a research need that attracts scientific interest. In this study, 16S rRNA gene amplicon sequencing and whole shotgun metagenomics revealed the leading microbial players and the primary metabolic interactions occurring in the biofilm growing at the biocathode where TCE reductive dechlorination (RD), hydrogenotrophic methanogenesis, and Cr(VI) reduction occurred. The presence of Cr(VI) did not negatively affect the TCE degradation, as evidenced by the RD rates estimated during the reactor operation with TCE (111±2 µeq/Ld) and TCE/Cr(VI) (146±2 µeq/Ld). Accordingly, Dehalococcoides mccartyi, the primary biomarker of the RD process, was found on the biocathode treating both TCE (7.82E+04±2.9E+04 16S rRNA gene copies g-1 graphite) and TCE/Cr(VI) (3.2E+07±2.37E+0716S rRNA gene copies g-1 graphite) contamination. The metagenomic analysis revealed a selected microbial consortium on the TCE/Cr(VI) biocathode. D. mccartyi was the sole dechlorinating microbe with H2 uptake as the only electron supply mechanism, suggesting that electroactivity is not a property of this microorganism. Methanobrevibacter arboriphilus and Methanobacterium formicicum also colonized the biocathode as H2 consumers for the CH4 production and cofactor suppliers for D. mccartyi cobalamin biosynthesis. Interestingly, M. formicicum also harbors gene complexes involved in the Cr(VI) reduction through extracellular and intracellular mechanisms.

3.
N Biotechnol ; 60: 27-35, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-32683048

RESUMO

A continuous-flow bioelectrochemical reactor was developed in a previous study to address the bioremediation of groundwater contaminated by trichloroethene (TCE). The present report investigated the applicability of the same system in the presence of Cr(VI) and its possible inhibitory effect on dehalorespiring bacterial populations. Preliminary batch tests were performed at the optimal cathodic reducing potential for the reductive dechlorination (RD) of TCE (-0.65 V vs. the standard hydrogen electrode) with two different dechlorinating microorganism consortia. The results demonstrated that Cr(VI) removal efficacy was increased by microorganisms that had been previously acclimatised to Cr(VI). Specifically, Cr(VI) was completely reduced only in the presence of acclimated microorganisms. The presence of chromate negatively affected RD performance, by either (i) limiting the TCE transformation to cis-dichloroethene at lower concentrations, or (ii) completely inhibiting RD at higher concentrations. In contrast, after the acclimation period, RD was extended down to vinyl chloride, which is the main TCE daughter product. Finally, the continuous flow reactor was fed by synthetic groundwater contaminated with TCE (50 µM) and Cr(VI) (45 µM), and the experimental results showed that Cr(VI) was completely reduced under RD conditions. Moreover, TCE removal was complete, with vinyl chloride and ethene as the main intermediates, thus indicating that chromate inhibition was decreased by Cr(VI) removal.


Assuntos
Biotecnologia , Cromatos/metabolismo , Técnicas Eletroquímicas , Tricloroetileno/metabolismo , Biodegradação Ambiental , Cromatos/química , Eletrodos , Água Subterrânea/química , Halogenação , Solventes/química , Solventes/metabolismo , Tricloroetileno/química
4.
Chemosphere ; 169: 351-360, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27886537

RESUMO

A sequential reductive-oxidative treatment was developed in this study in a continuous-flow bioelectrochemical reactor to address bioremediation of groundwater contaminated by trichloroethene (TCE) and less-chlorinated but still harmful intermediates, such as vinyl chloride. In order to optimize the anodic compartment, whereby the oxygen-driven microbial oxidation of TCE-daughter products occurs, abiotic batch experiments were performed with various anode materials poised at +1.20 V vs. SHE (i.e., graphite rods and titanium mesh anode coated with mixed metal oxides (MMO)) and setups (i.e., electrodes embedded within a bed of silica beads or graphite granule). The MMO anode displayed higher efficiency (>90%) for oxygen generation compared to the graphite electrodes. Additionally, the graphite bed presence adversely affects oxygen generation, likely due to the oxygen scavenging. This effect was completely eliminated by replacing the graphite granules with silica beads. The anodic setups were thereafter verified in a mentioned reactor at an applied TCE loading rate of approximately 20 µM d-1 and a hydraulic retention time of 1.4 d in each compartment. The cathode consisted of a bed of graphite granules and was potentiostatically controlled at -0.65 V vs. SHE. The best reactor performance in terms of removal efficiency (i.e., >97%), removal rate (i.e., 121.8 ± 2.7 µeq L-1 d-1), and the residual concentration (i.e., 5.03 ± 0.63 µeq L-1) of chlorinated contaminants was achieved with the MMO anode placed in a silica bed. Ecotoxicity tests performed with algae confirmed these results by showing progressive toxicity reduction from inlet to cathodic and anodic effluent using this reactor configuration.


Assuntos
Biodegradação Ambiental , Reatores Biológicos , Água Subterrânea/química , Halogenação , Tricloroetileno/química , Eletrodos , Grafite/química , Água Subterrânea/análise , Oxirredução , Óxidos , Oxigênio/química , Dióxido de Silício/química , Titânio/química , Cloreto de Vinil/química
5.
Chemosphere ; 136: 72-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25950501

RESUMO

Microbial bioelectrochemical systems, which use solid-state cathodes to drive the reductive degradation of contaminants such as the chlorinated hydrocarbons, are recently attracting considerable attention for bioremediation applications. So far, most of the published research has focused on analyzing the influence of key (bio)electrochemical factors influencing contaminant degradation, such as the cathode potential, whereas only few studies have examined the potential impact of mass transport phenomena on process performance. Here we analyzed the performance of a flow-through bioelectrochemical reactor, continuously fed with a synthetic groundwater containing trichloroethene at three different linear fluid velocities (from 0.3 m d(-1) to 1.7 m d(-1)) and three different set cathode potentials (from -250 mV to -450 mV vs. the standard hydrogen electrode). The obtained results demonstrated that, in the range of fluid velocities which are characteristics for natural groundwater systems, mass transport phenomena may strongly influence the rate and extent of reductive dechlorination. Nonetheless, the relative importance of mass transport largely depends on the applied cathode potential which, in turn, controls the intrinsic kinetics of biological reactions and the underlying electron transfer mechanisms.


Assuntos
Reatores Biológicos , Eletrodos , Tricloroetileno/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Biodegradação Ambiental , Transporte de Elétrons , Água Subterrânea , Halogenação
6.
Chemosphere ; 125: 147-54, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25556008

RESUMO

This paper investigated the reductive dechlorination (RD) of cis-dichloroethylene (cis-DCE) (average influent 14.2±0.7 µM) by a bioelectrochemical system (BES), in the presence of real contaminated groundwater containing high levels of nitrate and sulfate. The BES enhanced both the RD and competing reactions, such as nitrate and sulfate reductions, which occurred with neither an external organic carbon source nor any inoculum other than the indigenous microbial consortia in the real groundwater. In preliminary batch tests, RD and full nitrate removal occurred after a short lag phase, whereas sulfate reduction occurred slowly and alongside the RD. Under continuous flow conditions (hydraulic retention time, HRT, 1.4 d), the competition of different electron acceptors was strongly affected by the cathodic potential in the range -550 to -750 mV vs. standard hydrogen electrode (SHE). Nitrate reduction was driven to completion at all tested cathodic potentials, whereas sulfate reduction and the RD rate increased as the cathodic potential became more negative. At -750 mV vs. SHE, strong methanogenesis was also observed and became the most important sink of electrons. The overall coulombic efficiency decreased while the potential became more negative. The RD contribution was always less than 1%. Hence, greater energy consumption was required to obtain higher RD rate and better conversion. Anodic oxidation was only observed at -750 mV vs. SHE where almost 39% of residual vinyl chloride (VC) was oxidized and the sulfate was formed back from sulfide (further contributing to electric waste).


Assuntos
Dicloroetilenos/metabolismo , Água Subterrânea/química , Nitratos/metabolismo , Sulfatos/metabolismo , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Biodegradação Ambiental , Técnicas Eletroquímicas/métodos , Halogenação , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...