Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Image Process ; 31: 6548-6561, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36240040

RESUMO

Recently, unsupervised person re-identification (Re-ID) has received increasing research attention due to its potential for label-free applications. A promising way to address unsupervised Re-ID is clustering-based, which generates pseudo labels by clustering and uses the pseudo labels to train a Re-ID model iteratively. However, most clustering-based methods take each cluster as a pseudo identity class, neglecting the intra-cluster variance mainly caused by the change of cameras. To address this issue, we propose to split each single cluster into multiple proxies according to camera views. The camera-aware proxies explicitly capture local structures within clusters, by which the intra-ID variance and inter-ID similarity can be better tackled. Assisted with the camera-aware proxies, we design two proxy-level contrastive learning losses that are, respectively, based on offline and online association results. The offline association directly associates proxies according to the clustering and splitting results, while the online strategy dynamically associates proxies in terms of up-to-date features to reduce the noise caused by the delayed update of pseudo labels. The combination of two losses enables us to train a desirable Re-ID model. Extensive experiments on three person Re-ID datasets and one vehicle Re-ID dataset show that our proposed approach demonstrates competitive performance with state-of-the-art methods. Code will be available at: https://github.com/Terminator8758/O2CAP.


Assuntos
Identificação Biométrica , Humanos , Identificação Biométrica/métodos , Análise por Conglomerados
2.
Opt Express ; 22(4): 3860-5, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24663705

RESUMO

This paper proposes a new approach for blindly deconvolving images that are contaminated by Poisson noise. The proposed approach incorporates a new prior, that is the L0 sparse analysis prior, together with the total variation constraint into the maximum a posteriori (MAP) framework for deconvolution. A greedy analysis pursuit numerical scheme is exploited to solve the L0 regularized MAP problem. Experimental results show that our approach not only produces smooth results substantially suppressing artifacts and noise, but also preserves intensity changes sharply. Both quantitative and qualitative comparisons to the specialized state-of-the-art algorithms demonstrate its superiority.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...