Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(29): 19782-19788, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37396832

RESUMO

In this study, a ZnO/ZnS nanocluster heterojunction photoelectrode rich in surface oxygen defects (Vo-ZnO/ZnS) was prepared by applying a simple in situ anion substitution and nitrogen atmosphere annealing method. The synergism between defect and surface engineering significantly improved the photocatalysts. Given this synergism, Vo-ZnO/ZnS was endowed with a long carrier lifetime, narrow band gap, high carrier density, and high performance toward electron transfer under light conditions. Thus, Vo-ZnO/ZnS had three times the photocurrent density of ZnO under light illumination. To further evaluate its advantages in the field of photoelectric bioassay, Vo-ZnO/ZnS was applied as the photocathode of photoelectric sensor system for glucose detection. Vo-ZnO/ZnS showed excellent performance in glucose detection in various aspects, including a low detection limit, high detection sensitivity, and a wide detection range.

2.
RSC Adv ; 13(24): 16222-16229, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37266497

RESUMO

In this work, a heterojunction composed of a TiO2 nanosheet and layered Ti3C2 was synthesized by directly growing TiO2 in Ti3C2 MXene. Compared with pure TiO2, TiO2/Ti3C2 composites had increased surface area, and a light absorption range that extended from ultraviolet to visible light, which greatly extended the life of photogenerated carriers. A photoelectrochemical biosensor for DNA detection was constructed based on the TiO2/Ti3C2 heterogeneous structure, which was comprehensively studied based on photocurrent responses. In the absence of the target, the CdSe QDs were close to the surface of the electrode, resulting in enhanced sensitization and increased photocurrent. In the presence of the target, the photocurrent decreases due to the formation of rigid double strands with the probe DNA, which caused the CdSe QDs to be far away from the electrode surface. The sensor had stability and sensitivity for DNA detection in the range of 10 nM-10 fM, and the lower detection limit was 6 fM. Its outstanding characteristics also provided ideas for detecting various other target DNA for early diagnosis of various diseases.

3.
ACS Omega ; 8(24): 22099-22107, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37360461

RESUMO

The development of a photoelectrochemical (PEC) sensor for the sensitive and rapid detection of glucose is highly desirable. In PEC enzyme sensors, inhibition of the charge recombination of electrode materials is an efficient technique, and detection in visible light can prevent enzyme inactivation due to ultraviolet irradiation. In this study, a visible light-driven PEC enzyme biosensor was proposed, using CDs/branched TiO2 (B-TiO2) as the photoactive material and glucose oxidase (GOx) as the identification element. The CDs/B-TiO2 composites were produced via a facile hydrothermal method. Carbon dots (CDs) can not only act as photosensitizers but also inhibit photogenerated electron and hole recombination of B-TiO2. Under visible light, electrons in the carbon dots flowed to B-TiO2 and further to the counter electrode through the external circuit. In the presence of glucose and dissolved oxygen, H2O2 generated through the catalysis of GOx could consume electrons in B-TiO2, causing a decrease in photocurrent intensity. Ascorbic acid was added to ensure the stability of the CDs during the test. Based on the variation of the photocurrent response, the CDs/B-TiO2/GOx biosensor presented a good sensing performance of glucose in visible light, its detection range was from 0 to 9.00 mM, and the detection limit was 0.0430 mM.

4.
Nanomaterials (Basel) ; 12(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296747

RESUMO

The electrodes of two-dimensional (2D) titanium dioxide (TiO2) nanosheet arrays were successfully fabricated for microRNA-155 detection. The (001) highly active crystal face was exposed to catalyze signaling molecules ascorbic acid (AA). Zero-dimensional (0D) titanium carbide quantum dots (Ti3C2Tx QDs) were modified to the electrode as co-catalysts and reduced the recombination rate of the charge carriers. Spectroscopic methods were used to determine the band structure of TiO2 and Ti3C2Tx QDs, showing that a type Ⅱ heterojunction was built between TiO2 and Ti3C2Tx QDs. Benefiting the advantages of materials, the sensing platform achieved excellent detection performance with a wide liner range, from 0.1 pM to 10 nM, and a low limit of detection of 25 fM (S/N = 3).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...