Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35808613

RESUMO

Recently, hybrid fillers have been widely used to improve the properties of biopolymers. The synergistic effects of the hybrid fillers can have a positive impact on biopolymers, including thermoplastic corn starch film (TPCS). In this communication, we highlight the effectiveness of hybrid fillers in inhibiting the aging process of TPCS. The TPCS, thermoplastic corn starch composite films (TPCS-C), and hybrid thermoplastic corn starch composite film (TPCS-HC) were stored for 3 months to study the effect of hybrid filler on the starch retrogradation. TPCS-C and TPCS-HC were prepared by casting method with 5 wt% of fillers: nanocellulose (NC) and bentonite (BT). The alteration of the mechanical properties, aging behavior, and crystalline structure of the films were analyzed through the tensile test, Fourier transform infrared (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and water absorption analysis. The obtained data were correlated to each other to analyze the retrogradation of the TPCS, which is the main factor that contributes to the aging process of the biopolymer. Results signify that incorporating the hybrid filler (NC + BT) in the TPCS/4BT1NC films has effectively prevented retrogradation of the starch molecules after being stored for 3 months. On the contrary, the virgin TPCS film showed the highest degree of retrogradation resulting in a significant decrement in the film's flexibility. These findings proved the capability of the green hybrid filler in inhibiting the aging of the TPCS.

2.
Polymers (Basel) ; 13(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33803984

RESUMO

Thermoplastic starch (TPS) hybrid bio-composite films containing microcrystalline cellulose (C) and nano-bentonite (B) as hybrid fillers were studied to replace the conventional non-degradable plastic in packaging applications. Raw oil palm empty fruit bunch (OPEFB) was subjected to chemical treatment and acid hydrolysis to obtain C filler. B filler was ultra-sonicated for better dispersion in the TPS films to improve the filler-matrix interactions. The morphology and structure of fillers were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). TPS hybrid bio-composite films were produced by the casting method with different ratios of B and C fillers. The best ratio of B/C was determined through the data of the tensile test. FTIR analysis proved the molecular interactions between the TPS and the hybrid fillers due to the presence of polar groups in their structure. XRD analysis confirmed the intercalation of the TPS chains between the B inter-platelets as a result of well-developed interactions between the TPS and hybrid fillers. SEM images suggested that more plastic deformation occurred in the fractured surface of the TPS hybrid bio-composite film due to the higher degree of stretching after being subjected to tensile loading. Overall, the results indicate that incorporating the hybrid B/C fillers could tremendously improve the mechanical properties of the films. The best ratio of B/C in the TPS was found to be 4:1, in which the tensile strength (8.52MPa), Young's modulus (42.0 MPa), elongation at break (116.4%) and tensile toughness of the film were increased by 92%, 146%, 156% and 338%, respectively. The significantly improved strength, modulus, flexibility and toughness of the film indicate the benefits of using the hybrid fillers, since these features are useful for the development of sustainable flexible packaging film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...